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Abstract—DevOps has become increasingly widespread, with
companies employing its methods in different fields. In this con-
text, MLOps automates Machine Learning pipelines by applying
DevOps practices. Considering the high number of tools available
and the high interest of the practitioners to be supported by tools
to automate the steps of Machine Learning pipelines, little is
known concerning MLOps tools and their functionalities. To this
aim, we conducted a Multivocal Literature Review (MLR) to (i)
extract tools that allow for and support the creation of MLOps
pipelines and (ii) analyze their main characteristics and features
to provide a comprehensive overview of their value. Overall, we
investigate the functionalities of 13 MLOps Tools. Our results
show that most MLOps Tools support the same features but
apply different approaches that can bring different advantages,
depending on user requirements.

Index Terms—MLOps, Multivocal Literature Review, DevOps,
Machine Learning

I. INTRODUCTION

Effectively deploying new software artifacts as fast as
possible is one of the most critical challenges for companies
in the IT market [1]. To shorten software time to value,
organizations apply DevOps, a model that foresees a strong
collaboration between software development and operations
teams. In this context, DevOps engineers develop reusable
scripts to create, update and execute infrastructure through
Infrastructure as Code (IaC) [2]. IaC provides many tools to
deploy and operate cloud applications continuously. However,
managing and configuring resources remains tricky and time-
consuming, making IaC underutilized.

These issues become even more challenging when dealing
with Machine Learning (ML) models, which do not solely con-
sist of the ML code but also data sources, model management,
and model deployment while maintaining prediction accuracy.
Developing and operationalizing ML models requires novel
development processes across the entire ML lifecycle that
include new skills [3]; therefore, Machine Learning Operations
(MLOps) has been introduced. Similar to DevOps, MLOps
strongly advocates automation while monitoring all steps of
the ML pipeline to help enterprises optimize workflows and
avoid implementation issues. Although several tools have been

introduced in the past years, MLOps remains a relatively new
field with limited literature and online resources.

This paper provides an overview, feature analysis, and com-
parison of the MLOps tools available to bridge the different
understanding between practitioners and academics and review
the related tools and framework. In particular, we performed a
multivocal literature review (MLR) [4] leveraging white (i.e.,
academic) and grey literature (e.g., reports, blog posts, white
papers, and official documentation), extracting MLOps tools
and analyzing them considering different characteristics.

Our results report the state-of-the-practice MLOps tools,
each providing a diverse set of functionalities that support
practitioners during all MLOps phases. We have analyzed
the MLOps tools to investigate how MLOps tools offer these
services. Our findings highlight the scalability and elasticity
of Cloud-based ML Platforms, the high support for building
customized solutions proposed by Orchestration Platforms,
and the portability of TensorFlow Extended (TFX). These
features have varying levels of priority based on the user
requirements for ML applications. We deem our work of
interest to both researchers and practitioners. No previous
work has comprehensively compared MLOps features and
tools, making it hard to find the most suitable components
to manage ML pipelines and exploit MLOps benefits.

Structure of the paper. Section II provides an overview on
MLOps. Section Il summarizes the related work. Section IV
describes the research design and research questions of our
multivocal literature review, while the results are presented in
Section V and the threats to validity in Section VI. Finally,
Section VII concludes the paper and reports future work.

Online appendix. For the sake of space limitations, we store
all the material of our multivocal literature review, including
the list of primary studies, in an online appendix'.

II. BACKGROUND

Although ML provides predictions after being trained on
a static dataset [5], its pipelines are much more complex.
They require significant infrastructure engineering in addition

Uhttps://github.com/gilbertrec/MLR-MLOps-Tools-Features- Appendix



to code [6], including data extraction, data analysis, data
transformation, model training, model validation, model serv-
ing, and model monitoring. MLOps is the practice to help
model, develop, and operationalize ML lifecycle drawing on
the DevOps principles and practices [7].

The model considers the organizations’ collaboration cul-
ture, levels of automation, the ability for continuous im-
provement and rapid workflow, performance measurement,
shared responsibility, and communication when assessing ma-
turity [8]. MLOps practices should be shared with all the
stakeholders: from data scientists and data engineers to prod-
uct managers and business people. Leveraging MLOps and
automated workflows, organizations can deploy and refresh
models more effectively and efficiently than with manual
approaches [8]. However, developing ML pipelines and op-
timizing MLOps requires appropriate workflow management
systems [9]. Over the years, many companies have provided
support to build, scale, and manage end-to-end ML pipeline
visually, allowing non-expert users to benefit from the ML
potential [7]. Similar to DevOps, MLOps strongly advocates
automation and monitoring at all steps of the ML pipeline
with modular, self-contained components that aim to retrain
models automatically and can be shared by different setups.
Components consist of input parameters, outputs, and the
location of the container images, the latter encapsulating the
executable code and the environment definition. A typical
MLOps workflow is composed of the following steps:

1) DATA EXTRACTION to integrate relevant data from vari-

ous data sources.

2) DATA ANALYSIS to understand data from the datasets.

3) DATA CLEANING, TRANSFORMATION, AND FEATURE
ENGINEERING to split data into training, validation, and
test sets having appropriate formats.

4) MODEL TRAINING to train ML models and save the
best performing trained model starting from different
algorithms and parameter settings.

5) MODEL VALIDATION to evaluate models’ quality inter-
actively on the test data and identify whether they satisfy
the quality criteria based on performance metrics.

6) MODEL SERVING to deploy models in the target envi-
ronments integrated with other software components.

7) MODEL MONITORING to detect model degradation
through usage, input data, and performance analyses.

The number of automated steps indicates the maturity
level of the process. Continuous Training pipelines, deployed
through CI/CD, perform continuous training and prediction of
ML models on new data (i.e., Steps 1 to 5). We consider as
MLOps tools all tools enabling the above steps.

III. RELATED WORK

O’Leary and Uchida [10] observed over 100 professional
ML practitioners migrating ML models to systematic pipelines
to devise common problems and opportunities. Their analysis
revealed three hints to smooth the process: (i) the environment
for prototyping ML models should be the same as production;
(ii) ML pipelines should provide a framework of predefined

canonical operations units as components instead of free-
form flexibility; (iii) interfaces between components should be
made explicit and straightforward to increase the ease to use.
Hummer et al. [11] proposed a cloud-based framework and
platform for end-to-end development and lifecycle manage-
ment of artificial intelligence (AI) applications. They discuss
the challenges of building scalable AI operations and imple-
menting a ModelOps prototype around the concepts of meta-
data versioning, Al domain abstractions, re-usable patterns,
event-based pipelines, and seamless integration of lifecycle
capabilities. Benjamin et al. [7] provided 13 criteria to apply
DevOps concepts to ML pipelines and proposed a pipeline-
based meta-model based on two use cases (Dev and Ops in
action). They conclude that models are crucial to explaining
the decisions of both Dev and Ops teams, improving change
reactivity, reliability, and automation. Lastly, several initiatives
and projects focus on integrating DevOps and MLOps tools.
Baylor et al. [12] described continuous pipelines in the
Tensorflow Extended (TFX) platform developed and deployed
at Google. In addition, they discuss the lessons learned while
developing and deploying such models from the Google per-
spective. Kakantousis et al. [13] demonstrated the use of
Hopsworks, a data and ML platform, and described all the
stages of the pipeline. Fursin and Essayana [14] introduced
CodeReef, an open MLOps platform that enables automated
deployment of ML models.

While DevOps and IaC have become very popular among
software practitioners, the increasing need to automate soft-
ware building of ML-enabled systems presents new challenges.
Although MLOps is considered the solution, little is known
about the features, implications, and characteristics of MLOps
tools that support its implementation.

IV. THE MULTIVOCAL LITERATURE REVIEW

Our paper investigates the state of the practice of MLOps
tools to benchmark the main features and possibly choose the
most suitable tool for building ML pipelines. We answer the
following main research question:

What tools and features allow developers to build
ML-enabled software systems?

which has been detailed into two sub-questions:

e RQi. What MLOps tools can be used to build ML
pipelines for Continuous Deployment?
o RQo. What are the main features offered by MLOps tools?

The former research question gives an overview of the state
of the practice of the MLOps tools available to practitioners,
while the latter aims to discern a list of features to choose the
most suitable solution for building automated ML pipelines. To
answer these questions, we performed a multivocal literature
review [4] leveraging white (i.e., academic) and grey literature
(e.g., reports, blog posts, and official documentation), whose
process is depicted in Figure 1.

We relied on the three stages defined by Kitchenham et al.
[15]: (i) elaborate the search string, (ii) apply the string on
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Fig. 1: Process of the Multivocal Literature Review.

chosen search engines, (iii) filter out and extract the studies
based on inclusion and exclusion criteria.

The search string is based on the GQM terms to define
the research goal by focusing on purpose, issue, object, and
viewpoint [16].

Purpose: Systematically categorize

Issue: tools and applications for

Object (process): MLOps and DataOps
Viewpoint: from the practitioners’ perspective.

The search query derived from the RQs is the following:

(mlops V machine learning ops V
machine learning operation \ dataops) A (tool V
application) A (lifecycle V pipeline V platform N workflow)

We applied the search query to Google Scholar and Google.
Google Scholar is used for the so-called “white” literature:
books, journals, and thesis. The Google main search engine
is needed to retrieve “grey” literature: blog posts, magazines,
developer websites, webinars, GitHub repositories, and videos
(YouTube) are used for our research. We used the incognito
mode to avoid bias due to past search results and not avoided
websites recommended by advertisements. The results were
screened against inclusion and exclusion criteria. The inclusion
criteria ensure that the focus is on the design, implementation,
and experiences of MLOps tools or pipeline components. If
a study meets one of the inclusion criteria, it is selected.
The exclusion criteria ensure that studies adhere to design
and implementation requirements. If a study meets one of the
exclusion criteria, it is excluded. We defined our inclusion and
exclusion criteria as follows:

Inclusion Criteria:

1) The study discusses the components of minimal end-to-
end MLOps workflow(s).

2) The study discusses the practice of MLOps or ML-based
applications.

3) The study refers to the implementation of MLOps tool(s).

4) The study discusses experience, opinions, or practices on
MLOps pipeline(s).

Exclusion Criteria:

1) The study does not offer details concerning the design or
implementation of MLOps tool(s).

2) The study solely offers the design of a specific component
of ML pipeline(s).

3) The study does not offer or refer to details concerning
ML automation.

4) The study refers to commercial platform(s) that offer(s)
MLOps applications to sell their services for development
and deployment.

To ensure that the retrieved literature have enough so-
cial relevance, we assigned additional control factors (i.e.,
popularity) for GITHUB repositories and YOUTUBE videos.
A repository should have at least 100 stars indicating that
practitioners endorse the project. The threshold for YouTube
videos is set to 1000 views. The thresholds are based on
observations of selected previous studies analyzing the two
source types, which indicate that studies below these values
are not appreciated. Two of the authors of this paper conducted
the validation. They distributed the material nearly equally and
validated only their corresponding instances. In problematic
cases, the authors agreed on whether those specific documents
should be considered. Whenever they disagreed, they involved
one or more other authors of the paper in resolving the
disagreement. Finally, to answer RQ2, we extracted the main
features of the retrieved MLOps tools by analyzing their
documentation. Please consider that we cover the ML pipeline,
from data extraction to model monitoring. We analyzed the
selected sources studies following a qualitative analysis pro-
cess [17] by applying descriptive and pattern coding [18]. In
detail, to obtain the tools, the features and its categorization,
we performed the following steps:

o Descriptive Coding. The sources were analyzed to ex-
tract the features of MLOps Tools described that are
related to the Research Questions.

« Inter-rater Assessment. Two researchers performed an
assessment to standardize the codes extracted in a com-
mon form and ensure the completeness of the coding
process, reaching consistency and rigidness between the
researcher’s extraction.

« Pattern Coding. The concept of the features extracted
were grouped analyzing the relationships and creating
sets of coded data.

We build our research design upon the SLR guidelines
proposed in systematic literature reviews in software engi-
neering [19]. We also used the recent grey and multi-vocal
SLRs [20], [21] as a reference.



2018

2019

2020

Fig. 2: Study distribution by year.

30 28

20

Fig. 3: Study distribution by source type.

V. RESULTS AND DISCUSSIONS

Our review resulted in 60 studies. Figures 2 and 3 illustrate
the distribution of the selected studies by year and by source
type. The former distribution shows that contributions increase
yearly and signals that MLOps has gained attention since
2018. The latter distribution shows that the selected studies
are mainly from blog posts, suggesting that practitioners and
researchers share their experiences, opinions, practices, and
solutions concerning MLOps workflows, and tools. We report
the complete list of selected studies for space limitations in our
online appendix [22]. In the following, we discuss the main
results and insights from our analysis.

A. RQI1 What MLOps tools can be used to build ML pipelines
for Continuous Deployment?

We found 22 MLOps tools. Table I shows the complete
table of MLOps tools versus the number of times mentioned
by each source type. However, while exploring the online
information for each tool, it became clear that not all tools
are suitable for feature comparison. First, the sources do not
provide the necessary information about model management
in a structured way. Second, since developer websites were
included in the study selection and platform/tool developers
could write blog posts, the information could be biased out
of self-interest. Therefore, we added two exclusion criteria to
ensure the quality of the comparison:

Exclusion criteria:

5) The MLOps tool does not provide the documentation or

does not list characteristics.

6) The MLOps tool is mentioned less than five times by the
selected studies.

Based on the former exclusion criterion, we removed Argo
(Arg) from the list of MLOps tools because we could not
find any documentation. The second requirement is needed
to compare only the most commonly used MLOps tools. The
threshold was chosen by analyzing the number of occurrences
of the MLOps tools in the selected studies. First, we excluded
the three most occurring MLOps tools since they were men-
tioned significantly more than the others. Then, we used the
average value (i.e., five) as a threshold for reference quantity.
This constraint excluded eight MLOps tools with low usage:
Algorithmia (Alg), Allergor (All), BentoML (Ben), Cloudera
(Clo), Gradient (Gra), IBM Watson ML (IBM), Spell (Spe),
and Verta (Ver). This filtering resulted in 13 MLOps tools:

Apache Airflow (Air): an open-source platform to program-
matically develop, schedule, and monitor workflows as Di-
rected Acyclic Graphs to create task instances and workflows.
The pipelines are implemented as Python scripts, representing
the graph structures (i.e., tasks and dependencies) as code.

AWS SageMaker (AWS): a cloud ML platform integrated
into Amazon Web Services. It enables developers to create,
train, and deploy ML models in the cloud through Jupyter
Notebooks. It comes with built-in ML algorithms, debuggers,
and utilities encapsulated in Docker containers deployed on
Amazon Elastic Container Service (Amazon ECS). The train-
ing data and resulting model are stored through an Amazon
Simple Storage (Amazon S3) bucket.

AzureML (Azu): a Microsoft cloud-based environment can
be used to train, deploy, automate, manage, and track ML
models. It enables automated model training and tuning using
the Azure SDK. Azure CLI allows for developing, packaging,
and validating ML models. Finally, Azure DevOps can manage
deployment and automate pipelines.

DotScience (Dot): an enterprise-grade deployment and
collaboration platform for MLOps. The Hub is a central
workspace repository used to store the project metadata, which
can be accessed through the DotScience cloud, on-premise,
and in a hybrid form.

Gitlab (Git): an integrated software development platform
enabling DevOps. GitLab can be installed in most GNU/Linux
distributions and several cloud providers. The pipelines are
configured using YAML files that define the pipeline structure,
dependencies, stages, and jobs to be executed.

Google AI Platform (GAI): a platform where MLOps
workflows are orchestrated as a pipeline on Google Cloud.
It employs TensorFlow Extended and Kubeflow to develop
pipelines built, tested, and deployed using Google Cloud
Platform, which features Google Kubernetes Engine.

Jenkins (Jen): a self-contained, open-source automation
server that can be used to automate tasks related to building,
testing, delivering, and deploying software. It can be used as
a standalone application within a built-in Java servlet con-
tainer/application server as an isolated environment, installed
using a Blue Ocean Docker image.



TABLE I: MLOps tools and number of times they were mentioned by source types.

MLOps Tools

Source Type TFX Kub Air MLF Pol Azu GAI Val Git Jen Gra Clo AWS Spe Arg Sel Ben Ver IBM Dot Alg All
Journal o o0 o0 o0 o 3 3 0 o0 1 O O 3 0 O O O O 1 0 0 O
Scholar | Book 1 11 1 o0 1 1 o 1 1 0 1 1 0 0 1 0 0 O 0 0 O
Thesis 0o 1 1 1 1 1.1 0 0 1 0 O 1 O 1 O O 1 1 0O 0 O

Blog post § 135 10 2 4 4 2 4 3 1 2 6 0 2 2 0 0 0 5 1 0

Dev. website 1 2 0 1 0 1 2 2 0 O 1 0 1 2 0 0 0 O 1 1 2 1
Webinar 0 1 0 0 1 1.0 0 0 O O O O O O O O O O O o0 O

Google | White paper o 1 1 o0 o0 2 1 1 0 o0 OO 1 O0OOT1T 0O 1 1 1 1 0
Transcript 0o 1 1 o o 1 o0 o001 0 O O O O O O O O O 0 O

Github 33 1 0 1 5 2 1 0 1 0 0O 2 01 3 2 0 0 0 0 O

Video 2 3 1 2 0 3 0 0 2 2 0 O 1 O 1 O O O O O O O

Total 15 26 11 15 5 22 14 6 7 10 2 3 16 2 5 7 2 2 4 7 4 1
Documentation| Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes

Kubeflow (Kub): a ML toolkit to deploy ML pipelines in
Kubernetes. The deployment of the workloads can be done
locally, on-premises, or in cloud environments. Each step of
the ML pipeline adapts the configuration choosing the platform
and service required. The components are Docker images that
perform a step of the pipeline.

MLflow (MLF): an open-source platform for managing
the end-to-end ML lifecycle. It consists of four components:
Tracking, Projects, Models, and Model Registry. The former
logs parameters, code versions, metrics, and output files to
compare model performance.

Polyaxon (Pol): an open-source platform to manage ML
lifecycles and applications built as JSON APIs. It relies on
Kubernetes to create repeatable and portable deployments with
pipelines represented as DAGs. It can be executed in the cloud
and on-premise, accessible via a command line interface, a
dashboard, SDK, and Webhooks.

Seldon Core (Sel): an open-source platform to deploy ML
models on Kubernetes. The components are wrapped up as
containers. The Seldon Deployment files (i.e., in JSON or
YAML) define the components, images, resources, and inter-
actions that represent a service graph. Seldon Core leveraged
Kubernetes to deploy ML models and return predictions.

TensorFlow Extended (TFX): a Google-production-scale
ML platform based on TensorFlow. It provides a configuration
framework and shared libraries to integrate pipeline compo-
nents to define, launch, and monitor ML systems. A pipeline
typically consists of eight components that handle the process
from data ingestion to deployment. Each component consists
of three main parts: a driver, a publisher, and an executor. The
driver sends the metadata to the executor, while the publisher
accepts the results of the executor and stores them in metadata.

Valohai (Val): a predictive model lifecycle management
platform to build ML systems. A configuration file in YAML
defines the execution steps within the project context. Each
step is defined by commands executing in containers, encap-
sulating the main tools, libraries, and frameworks.

B. RQ2: What are the main features offered by MLOps tools?

The MLOps features we found support ML pipelines;
therefore, we include all the characteristics that focus on the
process, from data extraction to model monitoring. Overall, we
found 32 principal features, provided in Table II, by analyzing

the online documentation of the MLOps tools. Such features
can be split into three categories:

« General features related to all phases of ML pipelines,
focusing on the main characteristics of MLOps tools.

« Data management features related to ingesting, analyz-
ing, transforming, storing, and monitoring the required
data to ensure accessibility and reliability of ML models.

« Model management features related to development,
delivery, evaluation, and monitoring of ML models.

1) General Features: The general features were selected
based on the observed occurrence of these topics within the
online documentation of the selected sources. Table III shows
that MLOps tools offer similar features to deploy ML models
into production. However, the approaches to implement the
features differ. In essence, we could distinguish three types of
MLOps tools:

o Cloud-based ML platforms: cloud environments com-
prising all steps required by ML pipelines from data
storage to automated deployment (i.e., AWS Sagemaker,
AzureML, Dotscience, and Google Al platform).

¢ Orchestration platforms: platforms to manage end-to-
end ML pipelines relying on other resources and services
for computational power (i.e., Apache Airflow, Jenkins,
Kubeflow, MLflow, Polyaxon, Seldon Core, and Valohai).

« TensorFlow Extended: a configuration frameworks with
shared libraries integrating components to define, run, and
monitor ML systems.

When using CLOUD-BASED ML PLATFORMS, users must
use predefined cloud services. Such platforms are easier
to deploy, maintain and monitor. The solutions are more
elastic and scalable to customer needs. The most common
libraries are supported out-of-the-box. The main advantage of
ORCHESTRATION PLATFORMS is adapting hosting services
and libraries and mounting data volumes. They are highly
customizable since their components are loosely coupled, self-
contained, and encapsulated (e.g., using Docker). They mainly
depend on cloud services for data storage and computational
power, which depend on the number of training units and
resource usage. TENSORFLOW EXTENDED (TFX) can be con-
sidered orchestration platforms built upon TensorFlow libraries
and running on Apache Beam for data processing. However,
TEX pipelines rely only on TFX components being easier to
handle since all components smoothly integrate. TFX can be



TABLE II: Description of the features of MLOps tools.

General Features

Feature Category Feature MLOps tools
Open source The software code is public and available for use, modification, and distribution.
Scalability The ability to increase workload size within existing infrastructure (hardware, software,
etc.) without impacting performance.
Elasticity The ability to grow or shrink infrastructure (computing) resources dynamically as needed

to adapt to workload changes in an autonomic manner.

Cloud agnostic/native

The performance is consistent regardless of what platform it’s deployed on. In this
research this constraint is met if it could be deployed on: Amazon Web Services (AWS),
Microsoft Azure and Google Cloud Platform (GCP).

Extensibility

Easily define your own operators, executors and extend the library so that it fits the level
of abstraction that suits your environment.

Metadata management/collection

Metadata management is used to collect data during the complete ML pipeline.

Isolation/loosely coupling

Components can be developed and deployed independently and depend on each other to
the least extent practicable.

CI/CD The platform supports Continuous Integration (CI) and Continuous Delivery (CD) for the
complete ML pipeline.

Ul User Interface or Dashboard.

CLI Command Line Interface.

API gateway

Instead of calling services directly, clients can call the API gateway,which forwards the
call to the appropriate services on the back end and services as entry point for clients.

DAGs

Directed Acyclic Graphs are used to describe the workflow or can be encapsulated within
the platform.

Data Management Features

Data streaming (real-time)

Continuous flow of data generated by various data sources is supported and can be
processed, stored, analyzed, and acted upon directly.

Data storage

A build-in database to store raw data, projects and metadata.

Data analysis

A pipeline component generates features statistics over both training and serving data,
which can be used by other pipeline components.

Data transformation

A pipeline component identifies anomalies in training and serving data and prepares the
data for ML tasks. The output of this step are the data splits.

Data monitoring

The data is monitored to maintain the quality and inspect general metrics.

Metadata management/collection

Metadata management is used to collect data and can be used to determine which data
is used to train a model.

API endpoint

The output of the data management can be called by using a API gateway, which forwards
the data, metadata or data schema.

Automation

The data management process can be automatically executed in production based on a
schedule or in response to a trigger.

Model Management Features

Library agnostic/native

All (top) ML frameworks and libraries are supported.

Model tracking

Intermediate ML model performance can be tracked and logged to maintain reproducibil-
ity and gain insight.

Model registry

A centralized repository used to standardize the definition, storage,and access of features
for training and serving which is accessible via an APL

Hyper parameter tuning

An optimization engine is encapsulated for hyper-parameter tuning to efficient train the
ML models.

A/B testing

A/B testing can be used to track differences between two predictive model versions or
models can run in parallel on different end-points.

Anomaly detection

Outliers are automatically identified to uncover irregular patterns of the ML model.

Drift detection

Significant changes in data distributions and the prediction performance are automatically
detected to prevent staleness and accuracy decrease.

Threshold alert

It is possible to set up alerts when prediction distribution varies significantly from
expected values.

Performance monitoring

The model predictive performance is monitored to potentially invoke a new iteration in
the ML process.

Metadata management/collection

Metadata management is used to record ML model, the performance and runtime
parameters.

API endpoint

The output of the model management can be called by using a API gateway, which
forwards the model predictions.

Automation

The model management process can be automatically executed in production based on a
schedule or in response to a trigger.

integrated into other environments and orchestration platforms
(e.g., Kubeflow and Apache Airflow).

2) Data Management Features: Table 1V lists the features
related to data management features for each MLOps tool. All
cloud-agnostic MLOps tools support data ingestion of binary
data sources hosted in the cloud. Acquiring new data without
hosting could services is not supported. Besides common
cloud-based platforms, MLOps tools supporting data storage
(e.g., Dotscience, Polyaxon, and Valohai) also allow for
building data stores that provide direct access to raw data.

This service integrates file tracking systems to monitor data
updates constantly. Data is not parsed after every execution
but specific artifacts that record and retrieve metadata and
data schemes associated with the dataset(s) are created during
the first run of the pipeline. Additional statistics about the
dataset are extracted to validate incoming data, transform data,
and perform feature engineering operations. The result is a
saved model including the final train (and test) data, either
temporally stored or used in the cloud storage. Cloud providers
can also handle the data management process (e.g., AWS



TABLE III: General features of MLOps tools.

Feature - - MLOps tools

Air| AWS | Azu | Dot | Git| GAI|Jen | Kub | MLF |Pol | Sel | TEX | Val
Open Source X - - x| x X | x| x| x |-
Scalability X X X | x| x| x [ x| x X | x| x| x |-
Elasticity - X X | - x| x | x| x x [ x| -] - |x
Cloud Agnostic X -l x x| - [ x| x X X | x| x | X
Extensibility X X X | x X | -] x X | x| x| - |x
Metadata Collection| x X X | x| x| x | x| x X [ x| x| x |x
Isolation X X x| -1-]x|-|x X X | x| x -
CI/CD - - X [ x| x| x | x| - X -l x| - -
Ul X X X | x| x| x [ x| X X X | x X
CLI X X X | x [ x| x [ x| x X X | x| x | x
API Gateway X X X | x| x| x |-|x X | x| x| x |x
DAGs X - -l x| x | x| x X X | x| x

TABLE IV: Data management features of MLOps tools.

Feature MLOps tools

Air[AWS|Azu |Dot|Git| GAI|Jen |Kub|MLF |Pol|Sel | TFX | Val
Data Streaming X | x X | - x| x |[-]x X | x| x| - |x
Data Storage - X X | x |- x|-]- x| -1 - |x
Data Analysis X | x X [ x| x| x [x]x X | x|x]| x |x
Data Transformation| x X X [ x| x| x [ x| X X [ x| x| x |x
Data Monitoring - X X [ x| x| x [x] X - X | -] x | x
Metadata Collection | - - X | x| x| x |[x]|Xx X [ x|x| x |-
API endpoint - X X |- x| x | x]| - - X | -] x | x
Automation X | x X | x| x| x | x| x X | x|x| x |x

Glue). Extract, transform and load (ETL) services register the
data sources, extract data from the sources, store the associated
metadata, transform (e.g., cleaning) them to match target
schemas, and load them into databases. Such a process is
automated and requires low effort to build, maintain, and
run components. However, these services can cause problems
when on-demand/real-time transformations are needed. Fur-
thermore, when the process is handled by external services
not included in the MLOps pipeline, the training-serving skew
could be hard to manage. Nevertheless, in all cases explained
above, the data management process is similar using the
different MLOps tools.

TABLE V: Model management features of MLOps tools.

Feature . MLOps tools

Air| AWS|Azu|Dot|Git|GAI|Jen|Kub|MLF|Pol|Sel| TFX| Val
Library Agnostic X | X X [ x|-|x|[-]x X | x| x| - |x
Model Tracking X | x X [ x|x| x X X | x| x| x |x
Model Registry X| x | x| x|x|x |x|x | x |[x|x] x |Xx
Hyperparameter Tuning | x | X X [ x]|-]X X X | x|-] x |x
A/B Testing - X X [ x |- - X X | -]x| x |-
Anomaly Detection X | x X [ x| x| - - x| -
Drift Detection X X | x|-]x X | x
Threshold Alert X | X X | x| x| - - - -] -
Performance Monitoring| x | X X | X [ x| X X X | x|x]| x |x
Metadata Collection -l ox X | x| x| x |[x]X X [ x| x| x |x
API endpoint X | x X [ x| x| x |-]x X | x| x| x |x
Automation x| x | x| x|x|x [x]x - x| x| x | x

3) Model Management Features: Table V lists the features
for model management of each MLOps tool. After consuming
training data, evaluation data, and necessary metadata, ML
models can be deployed for the first time. Such models
are trained and validated until the requested performance is
reached to consider the model publishable. Please consider
that this goal could be reached even without MLOps. MLOps
foresees the continuously delivering of prediction services
based on newly trained models; therefore, model manage-
ment needs to be automated using model validation steps,

pipeline triggers, and metadata management. All considered
MLOps tools support automated executions based on triggers
(e.g., Github push) or scheduled time windows with new
models tracked and saved in model registries. Therefore, we
conclude that all tools allow for a high level of automation
and continuous delivery of new models, which eventually
can be queried with API prediction services. A/B testing
is a powerful method to identify the best models before
deployment by allowing users to compare their predictions.
Performance must be monitored to obtain reliable contin-
uvous delivery. The executions can be recorded, analyzed,
and monitored through metadata management. If this process
automatically triggers new executions, the model management
process can be fully automated, significantly reducing human
effort. Therefore, MLOps tools should provide optimization
engines that automatically search for the best hyper-parameter
settings, detect drifts and anomalies and eventually alert the
user if necessary. This high maturity level of an ML process
can be reached only by three MLOps tools: AWS Sagemaker,
Azure ML, and Dotscience. In the long term, some manual
steps are still needed to verify the model compatibility with
the target infrastructure and resolve issues. Developing a fully
automated model management process is challenging, and it is
recommended to gradually implement each step before aiming
at full automation. The selected MLOps tools allow testing and
deploying new models in a (semi-)automated fashion while
governing the single execution steps.

VI. THREATS TO VALIDITY

Our study is composed of two main parts: the multivocal lit-
erature review, and the feature analysis. This section describes
the main limitations and threats to validity of both of them.

a) Multivocal Literature Review: The main threats af-
fecting the validity of our MLR are related to the way we
selected and extracted the data used for our analyses. The
most crucial challenge for any literature review is identifying
an effective and complete set of search terms. To mitigate
this threat, we defined a detailed search strategy. Once we
extracted the first set of keywords, we identified synonyms or
alternative spellings, and then we verified the presence of such
terms in the relevant papers. Moreover, the second author of
this paper double-checked the steps leading to selecting the
relevant papers. Finally, we applied exclusion and inclusion
criteria to extract our interest materials. The research resulted
in 60 studies, including also blog posts, allowing us to study
both practitioners and researchers perspective. Although our
search query focused on the concept of MLOps, this definition
is recent; therefore, it could be partially used in grey literature,
thus possibly implying that some sources of literature were not
considered during the work due to related terms. Furthermore,
the research methodology doesn’t include the snowballing
inside the process. This missing step could also help retrieving
more sources of literature in order to go deeper in the review.

b) Feature Analysis: Other threats are related to
the meta-analysis performed when comparing the different
MLOps tools extracted. Feature analysis and comparison are



based solely on the documentation of the MLOps tools. We
distinguished between data management and model man-
agement. However, these concepts are strongly related and
intertwined for model lifecycle support. In particular, cloud-
orchestration platforms cover these processes together. Fur-
thermore, to fully capture and analyze the features of MLOps
tools, solely documentation is not sufficient, and they should
be evaluated in production.

VII. CONCLUSION AND FUTURE WORK

In this work, we performed a MLR to list the most common
MLOps tools and the features they implement. As a result, we
extracted 13 MLOps tools, and we discovered that their im-
plementation and integration with other services are different
despite such features being similar. For example, some tools,
e.g., Apache Airflow, define executions as experiments or
runners, while others use Directed Acyclic Graphs to represent
the tasks of the pipelines. However, all tools allow a high
level of integration and configuration and can be used to
build end-to-end ML pipelines and deliver ML models. In
addition, the tools leverage cloud services to process data,
containers to package applications, orchestration platforms to
define pipelines, and dashboards to track and monitor models.

Orchestration platforms allow (and recommend) the user
to combine different services. On the one hand, they allow
for getting the best from each tool and service, while, on
the other hand, finding the best combination could be tricky.
Devising methods to foster the integration of MLOps tools is
part of our future agenda. Finally, we found that companies
and platforms often define MLOps differently to raise their
number of customers. Therefore, we plan to provide a standard
definition of MLOps as part of our future agenda.
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