Empirical Software Engineering manuscript No.
(will be inserted by the editor)

When Code Smells Meet ML: On the Lifecycle of
ML-specific Code Smells in ML-enabled Systems

Gilberto Recupito® - Giammaria
Giordano® - Filomena Ferrucci® - Dario
Di Nucci® . Fabio Palomba

Received: date / Accepted: date

Abstract The adoption of Machine Learning (ML)-enabled systems is grow-
ing rapidly, introducing novel challenges in maintaining quality and managing
technical debt in these complex systems. Among the key quality threats are
ML-specific code smells (ML-CSs), suboptimal implementation practices in
ML pipelines that can compromise system performance, reliability, and main-
tainability. Although these smells have been defined in the literature, detailed
insights into their characteristics, evolution, and mitigation strategies are still
needed to help developers address these quality issues effectively. In this paper,
we investigate the emergence and evolution of ML-CSs through a large-scale
empirical study focusing on (i) their prevalence in real ML-enabled systems, (ii)
how they are introduced and removed, and (iii) their survivability. We analyze
over 400,000 commits from 337 ML-enabled projects, leveraging CODESMILE,
a novel ML smell detector that we developed to enable our investigation and
identify ML-specific code smells. Our results reveal that: (1) CODESMILE can
detect ML-CSs with precision and recall rates of 87.4% and 78.6%, respec-
tively; (2) ML-CSs are frequently introduced during file modifications in new

Gilberto Recupito
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: grecupitoQunisa.it

Giammaria Giordano
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: giagiordano@unisa.it

Filomena Ferrucci
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: fferrucci@unisa.it

Dario Di Nucci
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: ddinucci@unisa.it

Fabio Palomba
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: fpalomba@Qunisa.it

https://orcid.org/0000-0001-8088-1001
https://orcid.org/0000-0003-2567-440X
https://orcid.org/0000-0002-0975-8972
https://orcid.org/0000-0002-3861-1902
https://orcid.org/0000-0001-9337-5116

2 Gilberto Recupito® et al.

feature tasks; (3) smells are typically removed during tasks related to new
features, enhancements, or refactoring; and (4) the majority of ML-CSs are
resolved within the first 10% of commits. Based on these findings, we pro-
vide actionable conclusions and insights to guide future research and quality
assurance practices for ML-enabled systems.

Keywords Software Engineering for Artificial Intelligence - Software Quality
for Artificial Intelligence - Technical Debt - Empirical Software Engineering.

1 Introduction

Machine Learning (ML) evolved through the emergence of complex software
integrating ML modules, defined as ML-enabled systems [18]. Self-driving cars,
voice assistance instruments, or conversational agents like ChatGPTEI are just
some examples of the successful integration of ML within software engineering
projects. Despite such a rapidly growing evolution, the strict time-to-market
and change requests pressure practitioners to roll out immature software to
keep pace with competitors, leading to the possible emergence of technical
debt [§] i.e., a technical trade-off that can give benefits in a short period, but
that can compromise the software health in the long run.

Code smells represent a form of technical debt: these are symptoms of poor
design and implementation choices applied by developers during evolutionary
activities that, if left unaddressed, can deteriorate the overall quality of the
system [I0]. In the last decades, researchers have been studying code smells in
legacy code from multiple perspectives [IL23], identifying them as one of the
main precursors of defects and code instability [I2L[I4l[1520]. More recently,
Sculley et al. [30] showed that ML-enabled systems are prone to technical
debt and code smells, raising the need for a quality assurance process for ML
components. Cardozo et al. [4] and Van Oort et al. [36] argued that while the
issues in those systems are emerging, there is a lack of quality assurance tools
and practices that ML developers can use. Recupito et al. [26] further examined
the impact of nine AT Technical Debt (AITD) issues, revealing their significant
influence on multiple quality attributes and underscoring the limited support
available to practitioners for enhancing overall system quality. This lack of
quality management assets stimulates the proliferation of code smells in ML-
enabled systems [I7]. Consequently, given the complex nature of those systems,
new types of code smells have emerged. Considering the aspects that ML
developers face when dealing with ML pipelines, Zhang et al. [41] defined
a new form of code smells, ML-specific code smells (ML-CSs). Similarly to
traditional code smells, an ML-CS is defined as a sub-optimal implementation
solution for ML pipelines that may significantly decrease the quality of ML-
enabled systems.

An exemplary case of these quality issues is represented by the use of
a loop operation instead of exploiting the corresponding Pandas function for

I https://chat.openai.com/

https://orcid.org/0000-0001-8088-1001
https://chat.openai.com/

When Code Smells Meet ML 3

data handling, leading to the so-called ‘Unnecessary Iteration’ smell, as shown
in Listing |1| [41]. In particular, the green line shows how to replace the unnec-
essary loop to add the value “1” to a data frame.

1 df = pd.DataFrame([1, 2, 3])

2 - result = []

5 - for index, row in df.iterrows():
- result.append(row[0] + 1)

5 - result = pd.DataFrame(result)

¢+ result = df.add(1)

Listing 1: Example of Unecessary Iteration Smell.

Recent research has noted the need for further investigations into the nature
of ML-CSs [(l41]. In particular, our research provides empirical insights on
how and why these smells emerge and persist in ML-enabled systems. Specif-
ically, the lifecycle of ML-CSs—spanning their introduction, evolution, and
removal—-remains poorly understood. For example, whether ML-CSs are pre-
dominantly introduced during initial project development or emerge later due
to incremental changes and maintenance is unclear. Similarly, the conditions
under which these smells are removed and how they survive over time are yet to
be thoroughly explored. This lack of knowledge hampers efforts to proactively
design effective tools and practices to mitigate the risks associated with ML-
CSs. Addressing this gap is critical for ensuring the long-term maintainability
of ML-enabled systems. Adopting an evolutionary perspective allows us to an-
alyze software quality in light of Lehman’s Laws of Software Evolution [16],
which suggests that system degradation is a gradual process that becomes evi-
dent over time. This implies that while certain code smells might be acceptable
within a software community, exceeding a critical threshold could lead to no-
ticeable quality issues. In this context, a just-in-time tool could be designed
with policies that account for such thresholds. For instance, rather than flag-
ging every minor occurrence of a smell, it could provide warnings only when
the accumulation of smells reaches a level that risks degrading maintainability
or performance. Additionally, our study shows that certain smells appear more
frequently during specific development activities. By studying the evolution
of smells, we can determine whether developers actively resolve them or if they
persist, accumulating as technical debt. Conversely, if a smell naturally disap-
pears due to routine maintenance activities, it may indicate that the issue is
less critical. These insights are valuable for prioritization, helping teams focus
on addressing smells that have a lasting negative impact rather than treat-
ing all detected issues indiscriminately. Additionally, tracking the history of
smells allows us to investigate their impact on maintainability and developer
behavior. This understanding can inform better refactoring strategies, ensur-
ing that efforts are directed toward smells that historically persist over time
and are not resolved through other maintenance activities. Therefore, given
the complexity of these smells, developers may struggle to resolve all issues
due to various factors, including difficulty in detection or refactoring, limited

4 Gilberto Recupito® et al.

domain knowledge, or underestimation of potential consequences. This study
aims to provide a deeper understanding of the evolutionary characteristics of
code smells, forming the basis for more effective prioritization strategies. Fur-
thermore, the contribution made through CODESMILE supports developers by
automatically detecting these issues, facilitating a more efficient and informed
approach to software quality improvement.

Based on the considerations above, this paper aims to investigate the lifecy-
cle of ML-CSs by conducting a large-scale mixed confirmatory and exploratory
study. We focus on analyzing (i) the prevalence of ML-CSs, (ii) when and why
ML-CSs are introduced and removed, and (iii) how ML-CSs survive over time.
By leveraging a dataset of over 400k commits across 337 projects coming from
the NICHE dataset [39], and employing a novel ML-specific smell detection
tool, coined CODESMILE, we aim to provide actionable insights into the factors
influencing the emergence and evolution of ML-CSs.

The findings of the study report that ML-CSs are highly prevalent across
ML-enabled systems, with specific smells, such as ‘Columns and Data Types
Not Explicitly Set” and ‘TensorArray Not Used’; occurring most frequently.
Furthermore, the study reveals that ML-CSs are often introduced during
project evolution, particularly when developers modify existing files rather
than create new ones. This trend highlights ongoing maintenance and feature
expansion as key contributors to the introduction of smells. Additionally, the
findings show that the survivability of ML-CSs varies significantly based on
the type of smell. Certain smells, such as ‘In-Place APIs Misused’, persist for
extended periods, potentially due to their subtle impact, which delays their
detection and removal. Conversely, more disruptive smells, like ‘Gradients Not
Cleared’; tend to be addressed relatively quickly, as they directly affect sys-
tem functionality during runtime. Finally, the study identifies differences in
the prevalence and management of ML-CSs across projects of varying sizes
and those adopting Continuous Integration (CI) practices. Larger projects
and those without CI tend to exhibit higher rates of ML-CSs, highlighting the
importance of proactive quality assurance measures in such contexts.

To sum up, our study provides the following contributions:

1. A large-scale empirical study that provides insights into the prevalence,
introduction, removal, and survivability of ML-specific code smells across
337 real-world ML-enabled systems, offering actionable insights into their
lifecycle and evolution;

2. A novel static analysis tool, coined CODESMILE, specifically designed to
detect 12 ML-specific code smells. This tool advances automated quality
assurance for ML-enabled systems and supports further applications both
in research and practice.

3. An online replication package [25], which contains all the data collected,
scripts, and additional materials used in our study. It enables researchers
and practitioners to replicate our findings, build upon our methodology,
and further contribute to studying ML-specific code smells.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 5

Structure of the paper. Section [2| provides background information on ML-
CSs and overviews the current state of the art, pointing out how we contribute
to advancing the body of knowledge. Section [3| presents the methodology of
our study, detailing the research questions, dataset preparation, ML-CS de-
tection, and the analysis pipeline. Section [4] reports the key findings of our
investigation, while Section [5| provides an in-depth discussion of the take-away
messages for both researchers and practitioners. Section [6] discusses potential
threats to the validity of our study and the measures taken to mitigate them.
Finally, Section [7] concludes the paper and outlines avenues for future work.

2 Background and Related Work

This section presents an overview of ML-specific code smells and summarizes
the state-of-the-art research on code smells, highlighting how our work com-
plements and advances the current body of knowledge.

2.1 Background

ML-CSs represent suboptimal implementation practices within ML pipelines
that can significantly impact the quality, maintainability, and performance of
ML-enabled systems [41].

This new form of code smells has been recently introduced by Zhang et
al. [41], who released a catalog of 22 ML-CSs by empirically analyzing white
and grey literature. These smells encompass various aspects of ML pipeline
development, including data preprocessing, model training, evaluation, and
deployment. In the context of our work, we specifically focus on the subset
of ML-CSs detectable using static analysis, summarized in Table [T
The table presents their descriptions, pipeline stages, effects, and types. These
smells can be accurately identified solely by analyzing the source code without
requiring runtime information or external dependencies such as datasets or
execution logs. On the one hand, the static nature of these smells ensures their
accurate detection—as further explained in Section [3.3] On the other hand,
it enables a feasible historical analysis of their evolution, as the source code
history is readily available in version control systems: this is crucial for our
study, as it allows us to systematically investigate the prevalence, introduction,
and removal of ML-CSs over time, shedding light on their lifecycle within
ML-enabled systems. Additional details and examples of these ML-CSs are
available in our appendix [25].

Gilberto Recupito

et al.

Table 1: List of ML-CSs detectable through static analysis.

Code Smell Description Pipeline | Effect Type
Stage
Chain Indexing (CIDX) This smell refers to when a developer | Data Performance | API-Specific
uses to access a single data of a data | Cleaning
frame using “[|[]”.
Columns and DataType | This smell refers to when a developer | Data Defect Generic
Not Explicitly Set (CDE) declares a data frame without declar- | Cleaning Proneness
ing the column name and the data
type.
Dataframe Conversion API | This smell refers to when a developer | Data Defect API-Specific
Misused (DCA) uses the function .values() to transform | Cleaning Proneness
a data frame object to a Numpy array.
In-Place APIs Misused | This smell refers to when the developer | Data Defect Generic
(IPA) assumes the Pandas function returns | Cleaning | Proneness
an in-place value.
Gradients Not Cleared Be- | This smell refers to when a developer | Model Defect API-Specific
fore Backward Propaga- | does not use “optimizer.zero_grad()” | Training Proneness
tion (GNC) before ¢ loss_fn.backward()” to clear
gradients.
Matrix Multiplication API | This smell refers to when the developer | Data Readability | API-Specific
Misused (MMA) uses the function “np.dot” to multiply | Cleaning
a Numpy matrix.
Memory Not Freed (MNF) | This smell regards when a developer | Model Memory Is- | Generic
declares a machine learning model in | Training sue
a loop operation without using the li-
brary ad-hoc function to free the mem-
ory at the end of the loop.
Merge API Parameter Not | This smell refers to when a developer | Data Readability | Generic
Explicitly Set (MAP) does not specify the options “How” | Cleaning
and “On” during a Pandas merge op-
eration.
NaN Equivalence Compar- | This smell refers to when a developer | Data Defect Generic
ison Misused (NAN) uses the function “np.nan” to compare | Cleaning Proneness
a data frame value with a NaN value.
Pytorch Call Method Mis- | This smell is when a developer for- | Model Robustness | API-Specific
used (PC) wards the input to the network for the | Training
function. “self.net.forward()”
TensorArray Not Used | If a developer initializes an array using | Model Efficiency API-Specific
(TA) the function “tf.constant” and assigns | Training & Defect
a value in a loop operation, it is neces- Proneness
sary to use “tf.TensorArray()” avoid-
ing possible errors.
Unnecessary Iteration (UI) | This smell is regarded when a devel- | Data Efficiency Generic
oper uses a loop operation rather than | Cleaning

the corresponding Pandas function.

1 for step,

desc="Iteration",

2 for k, v in

inputs.items () :

3 + optimizer.zero_grad()

! inputs [k] = v.to(args.device)
5 outputs = model (¥*inputs,

6 loss, logits, all_attentions = (
7 outputs [0],

8 outputs[1],

9 outputs [-1],

10)

11 loss.backward ()

gradients in the head mask

inputs in enumerate(tqdm(eval_dataloader,
disable=args.local_rank not in [-1,

head_mask=head_mask)

Back propagate to populate the

01)):

Listing 2: Example of Gradients Not Cleared before Backward Propagation in the

Transformer project.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 7

Unlike traditional code smells, ML-CSs often emerge from the unique char-
acteristics of ML pipelines, such as their reliance on data transformations,
iterative model training, and the frequent use of specialized libraries like Ten-
sorFlow and PyTorch. These smells can hinder system performance, cause de-
fects, or reduce the interpretability of models. To provide a tangible example of
ML-CS, let us consider an instance of the ‘Gradients Not Cleared before Back-
ward Propagation’ smell. It refers to when a developer builds a neural network
in a loop operation and does not use the function optimizer.zero_grad() to
clear the old gradients at the end of each iteration. Without this operation,
the gradients will gather from all the preceding backward calls. This situation
can lead to a gradient explosion, causing a failure in the training process [3§].
The function optimizer.zero_grad() should be used before the backpropa-
gation step to mitigate this smell. Listing [2] shows an example of ‘Gradients
Not Cleared before Backward Propagation’ smell for the project TRANSFORM-
ERSE| We added an extra line (in green) to indicate how to refactor the smell
as denoted in the taxonomy of Zhang et al. [41].

Beyond isolated defects, ML-CSs have broader implications for system per-
formance and maintainability. Smells like ‘Unnecessary Iteration’, where in-
efficient loops replace vectorized operations, can significantly slow down data
processing, especially in large-scale datasets, and can ripple through the entire
ML pipeline, introducing bottlenecks that affect training times and deployment
schedules. Similarly, smells like ‘Columns and Data Types Not Explicitly Set’
in data preprocessing can lead to inconsistencies that cascade into later stages,
causing unexpected failures during model inference. Another key implication
of ML-CSs lies in their impact on reproducibility and interpretability. For ex-
ample, issues such as ‘In-Place APIs Misused’ can make it unclear whether
data transformations have been applied, leading to inconsistencies in exper-
imental results and undermining the credibility of findings. For ML models
deployed in high-stakes environments like healthcare or finance, this lack of
clarity poses significant risks for practitioners and end-users.

These considerations highlight the need better to understand the nature
and evolutionary properties of ML-CSs. Our study addresses this need by sys-
tematically investigating the prevalence, introduction, and removal of ML-CSs
over time. By shedding light on their properties and behaviors, our findings
aim to provide a foundation for designing quality assurance instruments that
are not only tailored to the unique challenges of ML pipelines but also specif-
ically adapted to the peculiarities of ML-CSs.

Table 2] shows the 12 ML-specific code smells detectable using CODESMILE.
We will discuss the potential impact and possible best practices for removing
or avoiding each smell.

Chain Indexing. When using df[“one”][“two”], Pandas interprets this as
two separate operations: first, it retrieves df[“one”], and then it accesses [“two” |
based on the result of the first operation. Additionally, assigning values when

2 Source code available at: https://github.com/huggingface/transformers/blob/mai
n/examples/research_projects/bertology/run_bertology.py

https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertology/run_bertology.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertology/run_bertology.py

8 Gilberto Recupito® et al.
Table 2: Code Smells Potential Negative Impact and Best Practices.
Code Smell Potential Issue Best Practice

Chain Indexing

Chain indexing in Pandas is slow and
unreliable. It performs multiple opera-
tions instead of one and may cause as-
signment failures due to unpredictable
views or copies.

Use loc[] for better performance and sta-
bility.

Columns and DataType
Not Explicitly Set

If columns and data types are not ex-
plicitly defined, the downstream data
schema becomes unpredictable, poten-
tially leading to silent errors that sur-
face later.

It is recommended that the columns and
the type are explicitly indicated during
data preprocessing.

Dataframe Conversion API
Misused

df.values() has an inconsistency is-
sue, as it may return different ar-
ray types, making its behavior unpre-
dictable. While noted in the documen-
tation, it is not deprecated and does
not trigger warnings or errors.

It is better to use df.tonumpy() rather
than df.values().

In-Place APIs Misused

Some methods return a copy instead
of modifying data in-place, leading to
unintended behavior.

Developers should ensure results are as-
signed to a variable or the in-place param-
cter is set.

Gradients Not Cleared Be-
fore Backward Propaga-
tion

Failing to call optimizer.zero_grad()
before loss_fn.backward() causes gradi-
ent accumulation, leading to gradient
explosion and training failure.

Use optimizer.zero _grad(),
loss_fn.backward(), andoptimizer.step() in
order, ensuring optimizer.zero_grad() is
called first to prevent gradient accumula-
tion.

Matrix Multiplication API
Misused

In mathematics, the dot product
should return a scalar, but np.dot() re-
turns a matrix for 2D multiplication,
deviating from this expectation.

For 2D matrix multiplication,
np.matmul() is preferred over np.dot()
due to its clearer semantics and correct
mathematical behavior.

Memory Not Freed

If the machine runs out of memory dur-
ing training, the process will fail.

Deep learning libraries provide APIs
to mitigate out-of-memory issues. For
example, TensorFlow suggests using

clear_session() in loops, while PyTorch
recommends .detach() to free tensors from
the computation graph.

Merge API Parameter Not
Explicitly Set

The validate parameter helps ensure
expected merge behavior, preventing
silent errors from duplicate keys. Since
merging is computationally expensive,
it should be done efficiently in a single
operation.

Developers should explicitly specify merge
parameters (e.g., how, on) to avoid ambi-
guity and silent errors.

NaN Equivalence Compar-
ison Misused

In NumPy, None == None is True, but
np.nan == np.nan is False. Since Pan-
das treats None as np.nan, compar-
isons with np.nan always return False,
which can cause unintended bugs.

Developers should be cautious with NaN
comparisons and rely on functions like
pd.isna() or np.isnan().

Pytorch Call Method Mis-
used

In PyTorch, self.net () and
self.net.forward() are mnot identi-
cal. Calling self.net.forward() directly
bypasses hooks registered in self.net().

It is recommended to use self.net() instead
of self.net.forward().

TensorArray Not Used

Use tf.TenTensorArray() is used to
grow arrays in a loop, avoid inefficien-
cies, and excessive intermediate tensor
creation.

Using tf. TensorArray() is a better solution
for growing arrays in a loop, as it avoids
inefficiencies and excess.

Unnecessary Iteration

Both Pandas and TensorFlow discour-
age looping for iteration, as it is in-
efficient. Pandas recommends avoiding
row-wise iteration, while TensorFlow
suggests alternatives to slicing loops.

Vectorized solutions are preferable to loops
for efficiency and simplicity. Pandas’ built-
in methods (e.g., join, groupby) and
TensorFlow’s tf.reduce_sum() outperform
manual iteration.

using chained indexing (df[“one”][“two”] = value) can lead to unpredictable
results. This is because Pandas does not guarantee whether df[“one”] returns a
view or a copy, which can cause assignments to fail unexpectedly and possible
performance issues. To avoid this, developers should consider using df.loc[:,
(“one”, “two”)] since this function runs as a single call, making it significantly

more efficient.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 9

Columns and DataType Not Explicitly Set. This smell refers to when
developers import a data frame using the pd.read_csv() function without spec-
ifying the columns and the data type for each column. Without this infor-
mation, it can be difficult for developers to understand the structure of the
downstream data schema, causing possible readability issues. To avoid this
smell, developers must specify the column names and types using the dtype
parameter.

Dataframe Conversion API Misused. When developers use the .value()
function provided by the Pandas’s official documentation to convert dataframe
in a Numpy provided by the Pandas library, It is unclear whether it returns the
actual array, a modified version of it, or a Pandas custom array, causing con-
sistency issues and increasing the error-proneness. Despite this, the .values()
API has not been deprecated. While the documentation includes a warning
about its use, it does not trigger a warning or error during code execution
when .values() is used. According to the Pandas’ official documentation, to
avoid this smell, it is better to use the function pd.to_numpy/().

In-Place APIs Misused. This smell affects Pandas and Numpy’s libraries
and refers to a consistency issue. Specifically, some of the APIs offered by these
two libraries consider the variables passed by reference, while others are for
value. This inconsistency can increase error proneness if developers do not
verify whether the invoked method works with in-place APIs. When possible,
it is better to set TRUE as the in-place API parameter value to avoid this and
to ensure the return type of each method before it is used.

Gradients Not Cleared Before Backward Propagation. This smell
can arise when developers use the PyTorch library to build a deep-learning
model. It appears when developers do not use the optimizer.zero_grad() func-
tion before loss_fn.backward() in a loop statement. Without this function, the
gradients will be accumulated during all the loss_fn.backward() invocations,
potentially causing a gradient explosion and increasing the error-proneness of
source code. To mitigate this smell, developers must invoke the optimizer.zero_grad()
function before the loss_fn.backward() function.

Matrix Multiplication API Misused. In mathematics, the dot product
is expected to yield a scalar rather than a vector. However, np.dot() performs
different operations depending on the input dimensions, and it may cause con-
fusion. As a result, developers sometimes misuse np.dot() in scenarios where
it is not intended, such as for two-dimensional matrix multiplication. For ex-
ample, a developer expecting a dot product but mistakenly using np.dot()
on matrices might not get a scalar. To avoid such issues, developers should
carefully choose the appropriate matrix multiplication API, explicitly indi-
cating the intended operation to prevent misunderstandings and avoid code
readability issues.

Memory Not Freed. This smell occurs when developers do not properly
manage memory in deep learning libraries, leading to run-out-of-memory is-
sues. In TensorFlow, repeatedly creating models within a loop without calling
.clear_session() can cause memory buildup. Similarly, in PyTorch, not using
.detach() keeps tensors linked to the computation graph, which wastes memory.

10 Gilberto Recupito® et al.

To avoid this smell, developers must call the respective clear session method
according to the library used (e.g., .clear_session() in the case of TensorFlow
or .detach() in the case of PyTorch).

Merge API Parameter Not Explicitly Set. This smell can arise when
developers use the function .merge provided by Pandas library. When develop-
ers use this function, it is important to indicate the parameters “on” to specify
explicitly which columns should be used for joining the datasets, “how” to de-
fine the type of join (e.g., outer, inner), and the “validate” parameter to checks
whether the merge follows the expected structure. The absence of these pa-
rameters can lead to readability and error-proneness issues. To avoid this code
smell, developers must explicitly set these parameters.

NalN Equivalence Comparison Misused. In Python, None == None
evaluates to True, but in NumPy, np.nan == np.nan evaluates to False. Since
Pandas treats None as equivalent to np.nan for simplicity and performance,
any comparison involving np.nan in a DataFrame will always return False. If
developers are unaware of this behavior, it can lead to unexpected bugs in
their code. To mitigate this smell, developers should avoid or minimize the
use of this function.

Pytorch Call Method Misused. In PyTorch, self.net() and self.net.forward()
are not the same. Calling self.net() also triggers all registered hooks, whereas
self.net.forward() only executes the forward pass without considering the hooks.
If developers mistakenly use .forward() directly, it can bypass important pre-
processing or custom logic implemented in the hooks, potentially affecting the
model’s behavior and reducing its robustness. To avoid this potential smell,
developers must prefer to use self.net() rather than self.net.forward().

TensorArray Not Used. If a developer initializes an array using tf.constant()
and attempts to update it in a loop to grow it, the code will result in an error.
This issue can be resolved using the low-level tf.while loop() API, but this
approach is inefficient. It creates numerous intermediate tensors during the
process, leading to unnecessary memory usage and reduced performance. To
avoid this issue, use tf.TensorArray() is a better solution for growing arrays
within a loop.

Unnecessary Iteration. As reported by the Pandas’s official documen-
tation, “iterating through pandas objects is generally slow.” For this reason, it
should be avoided, when possible, due to the possible efficiency issues. Devel-
opers should adopt a vectorized solution instead of iterating over data. Using
operations optimized for batch processing, such as tf. TensorArray(), is a more
efficient approach for handling growing arrays in loops. This avoids excessive
memory usage and improves performance compared to iterating and append-
ing values manually.

2.2 Related Work

Several studies have investigated code smells in traditional systems [I520,2T],
32], exploring their impact on software quality and evolution [I3,37]. Among

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 11

these, Tufano et al. [34] conducted a large-scale empirical study to analyze
when and why code smells are introduced, their survivability, and how de-
velopers address them. Their findings revealed that most code smells are in-
troduced during the creation of files, while only a negligible proportion are
removed through dedicated refactoring efforts. Inspired by the work of Tufano
et al., our research aims to extend this understanding into the domain of ML-
specific code smells. By doing so, we seek to enhance the quality assurance
processes for ML-enabled systems, which present unique challenges distinct
from those in traditional software systems.

In the remainder of this section, we focus on state-of-the-art research re-
lated to traditional code smells in ML-enabled systems, i.e., studies that
investigated how the code smells originally defined by Fowler [9] manifest in
ML-enabled systems. To our knowledge, no study has explicitly focused on
ML-CSs within the context of ML-enabled systems.

Tang et al. [33] conducted an empirical analysis of 26 ML projects, showing
that traditional code smells are highly diffused, with ‘Duplicated Code’ emerg-
ing as the most prevalent. Similarly, Van Oort et al. [36] analyzed 74 open-
source ML projects using PYLINT and confirmed that ‘Duplicated Code’ is
the most frequent smell. The authors also noted that code smells occur more
frequently in ML systems than traditional software. Building on this work,
Giordano et al. [II] conducted a longitudinal study of code smell diffusion
over time in ML-enabled systems, focusing on the activities leading to their
introduction and survivability. The findings suggested that the smell variation
does not follow a specific pattern over time; their introductions are mainly due
to evolutionary activities, and code smells can persist for several years with-
out remediation. More recently, Cardozo et al. [4] extended these findings by
examining 29 reinforcement learning projects. Their results echoed previous
studies, confirming that code smells emerge more frequently in reinforcement
learning projects than traditional systems, underscoring the distinct challenges
ML-enabled systems pose.

While these studies provide insights into traditional code smells in ML-
enabled systems, our research focuses specifically on ML-CSs, which are in-
herently tied to the unique characteristics of ML pipelines. More particularly,
by investigating the prevalence, introduction, removal, and survivability of
ML-CSs, our study aims to shed light on how these smells arise and persist.

i= Contribution to the State of the Art.

Our work advances the state of the art by shifting the focus from tra-
ditional code smells to ML-specific code smells, which are uniquely tied
to the characteristics of ML pipelines. By systematically studying the
prevalence, introduction, removal, and survivability of ML-CSs, we pro-
vide insights that address a significant gap in the literature. These findings
contribute to the body of knowledge by informing the design of customized

12 Gilberto Recupito® et al.

quality assurance tools and practices, enabling developers and researchers
to better manage the quality of ML-enabled systems.

3 Research Method

Our empirical study aims to explore to what extent ML-CSs are prevalent in
ML-enabled systems, when and how they are introduced and removed, and for
how long they survive. More specifically, let us formulate the specific goal of
the study through the application of the GQM approach [2].

Our Goal.

Purpose: Explore

Issue: (i) the prevalence, (ii) the introduction, (iii) the removal, and (iv)
the survival

Object: of ML-specific code smells in ML-enabled systems

Viewpoint: from the points of view of ML developers.

Figure [1| depicts the process we followed to address our research goal by
addressing a preliminary and three main research questions.

Projects Selection Data Extraction Data Analysis

RQ1

Last Commit

report Prevalence (RQ0)

CodeSmile

When ML-CS are
introduced (RQ1)

Smell-
Introducing
Commit Do

Commit
History

E
R

Project
Sampling

Why ML-CS are
introduced (RQ2)

Removing
Commit

PyDriller

i

How ML-CS
survives over
time (RQ4)

(3

£x

Fig. 1: The process designed for the study.

‘ RQqo. How are ML-specific code smells prevalent in ML-enabled systems?

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 13

The reason behind this preliminary investigation is twofold. On the one
hand, we may assess the relevance of the problem: should we identify a poor
prevalence of ML-CSs, this may indicate that the problem is not as relevant
as in traditional systems [2013], possibly not motivating further research on
the matter. On the other hand, we may identify the most common ML-specific
code smells and the type of ML projects in which they manifest themselves.

‘ RQ;. When are ML-specific code smells introduced in ML-enabled systems?

The first research question aims to classify the conditions and contexts
under which developers introduce ML-CSs. Additionally, it seeks to determine
whether ML-CSs are injected during the initial creation of ML projects or
emerge throughout the system’s evolution. The results to RQ; would inform
when ML-CSs should be mitigated.

‘RQQ- What tasks were performed when the ML-CSs were introduced?

After understanding when ML-CSs are injected, it is necessary to extract
information about the reasons that led developers to update the system by
introducing an ML-CS. So, RQ3 aims to extract developers’ actions that likely
introduce ML-CSs.

RQ3. When and how ML-specific code smells are removed in ML-enabled
systems?

RQj3 focuses on the timing and methods employed to remove ML-CS. This
research question is motivated by the need to understand the strategies and
circumstances under which developers address ML-CSs. By identifying the set
of strategies that developers use to remove ML-CSs, we aim to extract insights
to define automatic refactoring strategies for ML-CSs that developers would
be inclined to integrate into the development processes.

‘RQ4. How long do ML-specific code smells survive in the code?

Finally, RQ4 aims to observe the survival time of each ML-CS to identify
the ones that persist in the project over time. The outcome of the analysis can
be utilized to focus on detecting the ML-CSs that exhibit greater endurance
during software maintenance.

In terms of reporting, we followed the guidelines by Wohlin et al. [40]
and the ACM/SIGSOFT Empirical Standardsﬂ As for the latter, we used the
‘General Standard’, ‘Data Science’, and ‘Repository Mining’ guidelines.

3.1 Dataset Description and Projects Selection

We relied on the NICHE dataset [39] for our investigations. This dataset con-
tains 572 ML-enabled systems and was released at MSR, '23. We selected it for
two reasons. On the one hand, it contains only popular, active ML projects

3 Available at https://github.com/acmsigsoft/EmpiricalStandards

https://github.com/acmsigsoft/EmpiricalStandards

14 Gilberto Recupito® et al.

Table 3: Descriptive statistics of the NICHE projects.

Stars Commits LOC

Min 100 100 10
st Q. 211 219 3,820
Median 529 420 9,235
Mean 1,078 1,307 | 24,414
3rd Q. 1,641 1,070 | 21,845
Max 76,838 90,927 | 699,513

with extensive commit histories i.e., projects with over 100 stars on GitHub,
with commits more recent than May 1%, 2020, and with at least 100 commits,
allowing us not to select personal or inactive projects. On the other hand, it
contains heterogeneous projects with different characteristics.

To verify the feasibility of the analysis on the selected dataset, we prelim-
inary mined it.

This operation was necessary because it is reasonable to suppose that some
projects could be no longer available for some reason (e.g., repositories are
archived, some communities migrated to other version control systems, or some
repositories have restricted access). At the end of this step, we identified 566
projects available out of the 572 and 1,110,689 commits. Table |[3| shows the
descriptive statistics on the variables “Stars”, “Commits”, and “Lines of Code”
provided in NICHE [39]. As we can notice from the metrics extracted, the
project distribution in the NICHE dataset presents a median of about 529
stars, 420 commits, and 9,235 lines of code, suggesting that the projects have
a high development activity.

Observing the statistics of the projects, we noticed a high variability be-
tween projects in terms of lines of code (LOC). According to Zhou et al. [42],
the project size is an impactful confounding variable when analyzing code-
related aspects. Therefore, we analyzed the active projects in the dataset
through a percentile distribution analysis and divided them into three groups:

Small: Projects with a number of lines of code below the 30" percentile. This

set consists of 173 projects, all containing less than 4,765 lines of code.

Medium: Projects with a number of lines of code above the 30" percentile and
below the 60" percentile. This set consists of 169 projects, all containing
less than 11,836 lines of code.

Large: Projects with a number of lines of code above the 60" percentile. This
set consists of 224 projects, all containing more than 11,836 lines of code.

Due to the potential computational issues arising from the large number
of projects and commits, we applied statistically significant sampling for each
group. We used an online sample size calculator to estimate the required num-
ber of projects needed to draw statistically valid conclusionsﬂ Specifically,
we selected the projects considering each population, a sample with a 95%
confidence level and a 5% margin of error. As a result, we considered 117

4 Qualtrics sample size: https://www.qualtrics.com/blog/calculating-sample-size/

https://orcid.org/0000-0001-8088-1001
https://www.qualtrics.com/blog/calculating-sample-size/

When Code Smells Meet ML 15

Table 4: Descriptive statistics of the active projects divided by size.

Stars Commits LOC
Min 100 100 1,648
1st Q. 171 148 2,301
Median 367 244 2,921
Small
Mean 1,170 552 3,115
3rd Q. 879 436 3,871
Max 13,265 13,542 4,763
Min 100 105 4,783
1st Q. 159 241 6,268
. Median 290 375 7,817
Medium
Mean 1,138 610 8,039
3rd Q. 907 722 9,344
Max 18,087 3,299 11,835
Min 105 103 12,005
1st Q. 336 405 17,656
L Median 901 855 27,352
arge
Mean 3,052 2,271 54,342
3rd Q. 2,652 1,514 46,488
Max 33,741 47,094 661,808

projects, composed of 64,607 commits, for Small projects, 118 projects, con-
sisting of 71,380 commits, for Medium projects, and 142 projects, composed
of 265,671 commits, for the Large projects i.e., we analyzed 337 projects and
401,658 commits. Table [4] shows the descriptive statistics for each size group.
In addition to analyzing projects based on their size in terms of LOC, we
also considered the most related characteristics that led the authors to define
a project as ML-engineered. One such characteristic is the adoption of Con-
tinuous Integration (CI). The presence of a CI pipeline may directly affect
the quality assurance mechanisms implemented by the projects, possibly af-
fecting the presence of ML-CSs. This distinction between projects with and
without CI allows us to explore potential differences in the prevalence and
management of ML-CSs between the two groups. Therefore, to incorporate
this aspect into our analysis, we thoroughly examined the dataset and found
that 319 projects utilize CI tools, whereas 247 projects do not incorporate CI
into their development environment.

3.2 Data Extraction

After cloning the projects, we gathered fine-grained structural metrics using
PYDRILLER, a framework helpful to analyze Git repositories [31]. We extracted
the commit history of a project P belonging to the selected projects. For each
commit, C; € P, we collected the total number of files, the number of removed
and added files, the commit date, and the commit message.

16 Gilberto Recupito® et al.

3.3 Building an ML-Specific Code Smell Detection Tool

To address our research questions, we required detecting ML-specific code
smells. However, to the best of our knowledge, no existing tools are available,
necessitating the development of a custom detection tool that could be used
for our purposes. As such, we developed CODESMILE, an ML-CS detection
tool that leverages Abstract Syntax Tree (AST) analysis to automate the
identification of the 12 statically detectable ML-specific code smells introduced
in Section [2} The tool implements rule-based criteria derived directly from the
definitions provided by Zhang et al. [41].

The detection process begins by analyzing the libraries imported in the
source code. This step distinguishes general-purpose libraries (e.g., numpy,
pandas) from machine learning frameworks (e.g., tensorflow, torch). These
libraries form the basis for identifying ML-CSs, as their APIs and constructs
underpin the rule-based criteria implemented in CODESMILE.

Next, CODESMILE collects relevant keywords from the documentation of
the identified libraries. These keywords include method names, attributes, and
parameters critical to defining and detecting ML-CSs. For example:

— For Pandas, operations such as set_index, drop, merge, and fillna are
gathered.

— For TensorFlow and PyTorch, APIs related to the definition of ML models
are collected.

To build this dictionary, we referred to the smell descriptions and examples
provided by Zhang et al. [41]. We identified all libraries involved in the code
smells and manually annotated each method with its corresponding return
type in a CSV file. This labeling was done based on the official documenta-
tion of each library. In cases where the return type was unclear, we created
and executed ad-hoc scripts to determine the return value using the built-in
function “type()”.

Figure [2|illustrates how CODESMILE performs static type inference. When
analyzing source code, CODESMILE inspects each variable assignment and
checks whether the method invoked has a known return type in the internal
dictionary. If so, it extracts the variable name and checks the symbol table. If
the variable already exists in the symbol table, its type is updated with the
newly inferred one. If the variable is not yet declared, a new entry is added to
the symbol table with the inferred type. This systematic collection of relevant
keywords ensures that CODESMILE may incorporate library-specific behaviors
into its detection rules, enhancing its accuracy and robustness. Afterwards,
the detection tool applies three main steps, as described below.

Variable Extraction and Library Association. A critical workflow component
is determining whether the objects involved in potential smells are associated
with specific libraries, such as Pandas or TensorFlow. This process involves
tracking variable definitions and operations throughout the code to provide
accurate contextual information for smell detection.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 17

Dictionary

Method Return Type

DataFrame | Dataframe

read_csv | Dataframe

Merge Dataframe

DataFrame('coll':'12','1")
= pd.DataFrame('coll':'93"','8"

If1.merge(df2) Symbol Table
Variable Type
df1 Dataframe
df2 Dataframe
df3 Dataframe

Fig. 2: Example of How CodeSmile Performs Type Inference.

1. Variable Initialization Tracking: CODESMILE identifies variable def-
initions during AST traversal by analyzing assignment nodes. For each
variable, the tool inspects its initialization to determine if it corresponds
to a specific object associated with a library. For example, variables ini-
tialized using pd.DataFrame() or read_csv() are identified as Pandas
DataFrames, while those created with tf.Tensor() or torch.tensor ()
are recognized as objects belonging to TensorFlow or PyTorch, respectively.
This classification ensures that CODESMILE accurately associates variables
with their corresponding libraries and enables precise smell detection.

2. Cross-Referencing Library Usage: The tool cross-references the de-
tected variable with the libraries imported in the source code, which en-
sures the identified operations are relevant to the associated library and
not generic constructs. Therefore, library-related variable usage is tracked
throughout the code to handle transformations and reassignments. For
example, if df (a Pandas DataFrame) is reassigned as df _copy = df, this
association is preserved, and the subsequent transformations are monitored
to collect all the related variables in the context.

3. Contextual Validation: CODESMILE confirms that operations flagged as
potential smells involve library-specific objects. For instance, it is excluded
if a method matches a Pandas API but is applied to a non-DataFrame
object to minimize false positives.

AST-Based Detection After establishing foundational information, the tool
parses the source code into an AST representation. Using a recursive traversal
of AST nodes, the tool inspects constructs such as function calls, attribute

18 Gilberto Recupito® et al.

accesses, and indexing operations, enabling a detailed analysis of API usage

against predefined detection rules.
For example, consider the case of the ‘In-Place APIs Misused’ smell, which

occurs when a DataFrame operation is performed without explicitly setting
the inplace=True parameter or assigning the result to a new variable. These
practices can lead to ambiguity, as the original DataFrame remains unmodified,
discarding the operation’s effect. For the sake of clarity, Listing [3] illustrates
this smell in a Pandas DataFrame operation.

T |
> fields = [data_manager.get_field_name(idx) for idx in]
3 pd_df = pd.DataFrame(flatten_obj, columns=fields,[...])

. - pd_df.set_index(data manager.schema.sample_id_name)
5+ pd_df = pd_df.set_index(data manager.schema.sample_id name)
6 [...]
Listing 3: Example of In-Place API Misused in the Federated AI/FATE project.

A running example of execution of the detection of this smell is:

1. The tool detects the initialization of pd_df as a Pandas DataFrame through
the pd.DataFrame () constructor.

2. The prefix pd is mapped to the Pandas library based on the import state-
ment (import pandas as pd).

3. The method set_index () is flagged as a potential in-place API due to the
absence of inplace=True and lack of result assignment.

4. By verifying that pd_df is a Pandas DataFrame, the tool confirms the
context and flags the smell.

Rule-Based Detection for 12 ML-CSs CODESMILE implements 12 rule-based
conditions, each targeting a specific ML-CS, as shown in Table [5] These rules
capture both structural and semantic characteristics of smells:

— Structural Analysis: Identifies patterns such as API misuse based on
method names.

— Semantic Context: Ensures that smells are only detected when the op-
erations involve the appropriate objects, such as DataFrames or tensors.

By combining variable extraction, library association, and AST-based traver-
sal, CODESMILE ensures precise detection of ML-CSs, minimizing false posi-
tives due to API-Call of other libraries and enhancing detection accuracy.

3.4 Validation of the ML-Specific Code Smell Detection Tool
After developing our detection tool, we validated its accuracy through a user

study involving ML engineers. This approach was chosen to ensure the vali-
dation process was grounded in practical, domain-specific expertise, reflecting

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML

19

Table 5: Rule-Based Conditions for Detecting Code Smells

Name of the Smell | Specific Detection Rule

Chain Indexing (CIDX)

Detect nested ast.Subscript nodes where indexing
operations are chained (e.g., df [>col’] [’subcol’]).

Columns and DataType Not
Explicitly Set (CDE)

Check for DataFrame or read_csv calls where the
keywords attribute is missing or does not contain the
dtype argument.

Dataframe Conversion API
Misused (DCA)

Identify the method calls where the method name is
values() and the object is a Pandas DataFrame.

In-Place APIs Misused (IPA)

Detect DataFrame related method calls where the
inplace=True parameter is not set or the result is not
assigned to a variable.

Gradients Not Cleared Before
Backward Propagation (GNC)

Search for calls in training cycles to
loss_fn.backward() without a preceding call to
optimizer.zero_grad().

Matrix Multiplication API

Misused (MMA)

Detect calls to np.dot for matrix multiplication in-
stead of using the np.matmul.

Memory Not Freed (MNF)

Check loops where ML models are instantiated with-
out a subsequent call to clear_session or an equiva-
lent memory-freeing method.

Merge API Parameter Not Ex-
plicitly Set (MAP)

Identify merge calls in Pandas where the keywords at-
tribute is missing or does not include how, on, and
validate arguments.

NaN Equivalence Comparison
Misused (NAN)

Detect comparing nodes that involve np.nan as one of
the two comparator of the condition.

Pytorch Call Method Misused
(PC)

Identify direct calls to the method forward().

TensorArray Not Used (TA)

Detect loops where tf.constant is used for tensor ar-
ray assignment.

Unnecessary Iteration (UI)

Identify for loops over rows in DataFrames (e.g., us-
ing iterrows) instead of vectorized operations like

groupby or apply.

real-world development practices. To achieve this, we first selected a statisti-
cally significant sample from the 3,439 ML-related files identified as containing
at least one ML-CS. Using this subset, we designed an experimental kit to
guide participants through the analysis and assessment of the tool’s detection
capabilities. The kit comprised three primary components:

— Definitions and Instructions for Each ML-CS: Participants were pro-

vided with detailed definitions and instructions for each ML-CS, as outlined
by Zhang et al. [41]. For each smell to be analyzed, the participants received
information on its definition, the potential problems it could cause, possible
refactoring solutions, and practical examples illustrating its occurrence.

— Validation Register: Participants used a structured sheet to report their
findings. For each file and ML-CS type, participants indicated whether the
file was affected (answering “Yes” or “No”) and recorded the line number(s)
where the smell occurred.

— Task-Specific Instructions: A detailed supplementary document was
provided to ensure participants clearly understood the task objectives and
the steps required to complete the evaluation. This document included an

20 Gilberto Recupito® et al.

Table 6: Performance Metrics of CodeSmile to detect each ML-CSs

Chain Indexing (CIDX) 29 2 4 0.935 0.879
Columns and Datatype Not Explicitly 55 1 1 0.982 0.982
Set (CDE)

Tensor Array Not Used (TA) 33 0 8 1.000 0.805
Dataframe Conversion API Misused 19 0 21 1.000 0.475
(DCA)

Gradients Not Cleared Before 12 1 1 0.923 0.923
Backward Propagation (GNC)

NaN Equivalence Comparison 2 0 0 1.000 1.000
Misused (NaN)

In-Place APIs Misused (IPA) 14 5 8 0.737 0.636
Matrix Multiplication API Misused 1 0 0 1.000 1.000
(MMA)

Memory Not Freed (MNF) 17 1 5 0.944 0.773
Merge API Parameter Not Explicitly 14 0 2 1.000 0.875
Set (MAP)

PyTorch Call Method Misused (PC) 10 20 O 0.333 1.000
Unnecessary Iteration (UI) 2 0 7 1.000 0.222
Total 209 30 57 0.874 0.786

overview of the experimental materials, instructions on how to interpret
the detection results from the tool, and guidance on how to validate or
refute the identified ML-specific code smells.

Given the large number of files containing potential smells, we conducted
a pilot study to assess the feasibility of the evaluation process. Two Ph.D.
students with three years of experience in ML were recruited to inspect a
subset of 12 files affected by ML-CSs. This pilot study served two purposes.
First, it allowed us to refine the clarity of the task and improve the reporting
mechanism in the validation register. Second, we gathered data on the time
required for participants to inspect specific smells, providing insights into the
ideal workload size to prevent excessive task duration.

Participants in the pilot study took approximately 25 minutes to complete
the inspection. While certain ML-CSs, such as ‘Columns and Datatype Not
Explicitly Set’ were quick to identify, others, such as ‘Memory Not Freed’
required up to 8 minutes per detection. Based on the results, we determined
that the full set of 346 files affected by ML-CSs would be too extensive for
practical evaluation and reduced the sample size to 100 files. To ensure a robust
validation, we employed a team of ten ML engineers. Each participant has a
minimum of three years of experience in ML development. We stratified the
sample to include files representing all types of ML-CSs covered in this study.
Each file was inspected by two evaluators to enhance reliability. In cases where
only one evaluator identified an instance of a smell, the two discussed their
findings to reach a consensus on whether the smell should be flagged.

This stratified approach allowed participants to focus on a selected subset
of smells, ensuring greater precision while reducing the required human effort.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 21

Results of the evaluation are summarized in Table [fl The distribution
of true positives (TP), false positives (FP), and false negatives (FN) across
the analyzed ML-CS types reveals significant variability in their prevalence
and detectability. For instance, smells such as ‘Columns and Datatype Not
Explicitly Set” and ‘Tensor Array Not Used’ exhibit high true positive rates
with minimal false positives and negatives, suggesting that these smells are
common and relatively straightforward to detect, aligning with their inherent
clarity in definition and behavior. On the other hand, more complex smells,
such as ‘Dataframe Conversion API Misused’ and ‘Memory Not Freed’, pose
greater challenges, as evidenced by higher FN counts, indicating their complex
nature during detection.

The precision and recall metrics highlight the efficacy of CODESMILE in
detecting different ML-CSs. Most smells, including ‘Tensor Array Not Used’
and ‘Merge API Parameter Not Explicitly Set’ reaches a maximum precision
on a higher samples of evaluations. Similarly, ‘Columns and Datatype Not
Explicitly Set’, ‘Memory Not Freed’, ‘Change Indexing’, and ‘Gradients Not
Cleared Before Backward Propagation’ detection exceed the 90% of preci-
sion, highlighting therefore excellent detection from our static analysis tool.
Other smells, including ‘Unnecessary Iteration’ and ‘Merge API Parameter
Not Explicitly Set’ are evaluated on very small sample of instances of smells
but considering the examples found on real projects, these are evaluated by
the participants as true positives. However, the recall for some smells, such
as ‘Unnecessary Iteration’ (22.2%) and ‘Dataframe Conversion API Misused’
(47.5%), indicates room for improvement in reducing false negatives. These
results suggest that while CODESMILE performs well in identifying instances
of these smells, some occurrences are overlooked, likely due to the contextual
nature of their detection.

The overall precision (87.4%) and recall (78.6%) achieved by CODESMILE
indicate that the tool provides a robust foundation for identifying ML-CSs.
These metrics significantly increase our confidence in the conclusions drawn
from the analyzed set of code smells to address our research questions. Even
in cases where recall is relatively low, the tool demonstrates exceptionally high
precision, reaching up to 100%. This ensures that the vast majority of detected
instances are correct, enabling reliable detection outcomes.

In the context of our mining study, high precision is particularly critical,
as it ensures the analysis of a reliable sample of smell instances. Although
lower recall means that not all true positives are included in the sample, the
availability of a highly accurate subset of smells still allows us to draw mean-
ingful and trustworthy conclusions. In other words, the high precision of the
tool minimizes the impact of false positives on the analysis, enabling robust
insights into the characteristics and behaviors of ML-specific code smells. Ad-
ditionally, these results represent a valuable side contribution of our work.
CODESMILE has potential usefulness for practitioners to detect ML-CSs in
real-world scenarios and can serve as a foundation for researchers seeking to
enhance its functionality by building upon the rule-based approach proposed
in this study.

22 Gilberto Recupito® et al.

3.5 Commit Data Extraction

After identifying the method for detecting ML-CS, we extracted the commit
data for each project to address our research questions. First, we identified
the smell-introducing and smell-removing commits for each identified ML-CS
instance. Specifically, we tracked each smell s; identified in a commit ¢;, using
its file name and line number. We analyzed the project’s history from the
first commit, comparing ¢; and ¢; + 1 pairwise. For each pair of consecutive
commits, we considered the two following cases:

1. If ¢; + 1 contains a smell s; not contained in ¢;, then ¢; + 1 is the smell-
introducing commit for s;.

2. If ¢; contains a smell s; not contained in ¢; + 1, then ¢; + 1 is the smell-
removing commit for s;.

After collecting smell-introducing and smell-removing commits, we ana-
lyzed the commit messages to understand the rationale behind introducing
and removing ML-CSs.

3.6 Data Analysis

The following section explains how we analyzed the collected data to respond
to our research questions.

RQg: How are ML-specific code smells prevalent in ML-enabled systems?
CODESMILE analyzed the last snapshot of the selected ML-enabled systems
to observe the prevalence distribution of each ML-CS. Statistical descriptions
and plots were employed to understand the characteristics of each distribution.
Then, insights on the most prevalent ML-CS across several projects were pro-
vided. Such results were further enriched by mapping each identified ML-CS to
the related ML-pipeline stage, utilizing the mapping framework established by
Zhang et al. [41]. This additional mapping step enhanced our understanding of
ML-CSs, revealing the most prone areas within the ML development pipeline.
Each analysis was conducted considering the effect that related factors could
have. Through the different size groups and the adoption of continuous inte-
gration defined in Table we applied statistical tests to understand whether
these are possible factors influencing the prevalence of ML-CS in ML-enabled
systems. At first, we hypothesize that different types of ML-CS may differ in
prevalence. Hence, we formulated the following null hypothesis:

HO: There is no statistically significant difference between the prevalence of
the smells i and j.

with i and j belonging to the set of ML smells S considered in the study. We
identified as alternative hypotesis:

HaO : There is a statistically significant difference between the prevalence of
the smell i and j.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 23

Secondly, we hypothesized that the prevalence of ML-CS may depend on
the size of the ML projects. Larger projects may be more complex and involve
more contributors, increasing the likelihood of introducing code smells during
development. As such, we formulated the following null hypothesis:

H1: There is no statistically significant difference in the prevalence of the smell
1 among large, medium, and small projects.

with i belonging to the set of ML smells S considered in the study, large
projects being those having a size (in terms of lines of code) above the 60"
percentile of the distribution of the sizes of all projects, medium projects being
those having a size between the 30" and 60" percentile of the distribution of
the sizes of all projects, and small projects being those having a size lower than
the 30" percentile of the distribution of the sizes of all projects. We identified
the following alternative hypotheses:

Hal: There is a statistically significant difference in the prevalence of smell i
between small and medium projects.

Ha2: There is a statistically significant difference in the prevalence of smell i
between small and large projects.

Ha3: There is a statistically significant difference in the prevalence of smell i
between medium and large projects.

We hypothesized that projects relying on a CI pipeline may have a lower
prevalence of code smells than those not relying on that. Indeed, the presence
of a CI pipeline may directly affect the quality assurance mechanisms imple-
mented by the projects, possibly affecting the presence of ML code smells.
Hence, we formulated our last null hypothesis:

H2: There is no statistically significant difference in the prevalence of the smell
1 between projects relying and not on a Continuous Integration pipeline.

with i belonging to the set of ML smells S considered in the study. We
formulated as an alternative hypothesis:

Ha2 There is a statistically significant difference in the prevalence of the smell
i between projects relying on and not on a Continuous Integration pipeline.

Regarding statistical verification, we used different tests for the three hypothe-
ses we formulated. For HO and H2, we used the non-parametric Wilcoxon
test [6], which investigates significant differences between two populations.
Then, for the analysis for HI and given the goal of exploring differences be-
tween three groups, we used a test that allows us to study differences across
more than two populations: the non-parametric Friedman test.

The results were statistically significant at =0.05. We normalized the data
distribution by the project LOC to avoid possible biases and quantify the effect
size using the Clift’s Delta (§) [5].

24 Gilberto Recupito® et al.

RQ:: When are ML-Specific code smells introduced in ML-enabled systems?
After the commit data extraction phase described in Section [3.5] we collected
all the smell-introducing commits to understand when each ML-CS is intro-
duced. The outline of the smell-introducing commits allowed us to understand
which ML-CSs are introduced during file creation and which occur during the
evolution and maintenance of ML projects. To gain insights into the lifecycle of
ML-specific code smells, we also implemented a segmentation approach based
on three key factors: development time, activity levels, and distance from the
release. The first two segments were used to examine the moment ML-CSs
are introduced. Each commit is categorized based on its duration since the
project started and its position in the commit history. Subsequently, we an-
alyzed within each segment to determine the presence of smell-introducing
commits. In addition to these segments, the third segment investigates the re-
lationship between the introduction of ML-CSs and project releases. We iden-
tified commits labeled as “Release” using PyDriller and categorize all other
commits based on their proximity to the subsequent project release (e.g., one
day before the next release). By examining the temporal proximity of code
smell occurrences to release events, we aim to ascertain whether the timing of
releases influences developers’ proneness to introduce ML-CSs. Table 7] pro-
vides the segments and the value used for the segmentation.

Table 7: Segmentation of commits for analyzing the introduction of ML-CSs.

Tag Description Values

Development Time

Based on the duration since

the project’s starting date

[one week, one month,

one year, more than

one year]

Activity Level

Based on its sequence in
the project’s commit his-
tory, identifying the num-
ber of previous commits.

[first 10% of commits,
first 20% of commits,
first 50% of commits,
after the first 50% of
commits]

Distance from a Release:

Based on the time elapsed
before the next release.

[one day, one week, one
month, more than one

month]

RQy: What tasks were performed when the ML-Specific code smells were in-
troduced? After collecting the list of smell-introducing commits for all ML-
CS instances, we analyzed their messages to explain the rationale behind the
changes. Specifically, we leveraged pattern matching, as previously done by
Tufano et al. [34] to analyze why traditional code smells are introduced. In
detail, we extracted the rationale, starting from the label set indicating the
change operations described in Table |8} Finally, we analyzed to what extent
commit rationales and introduced ML-CSs co-occur.

RQ3: When and how are ML-specific code smells removed in ML-enabled sys-
tems? After analyzing the conditions and reasons for introducing ML-CSs, we

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 25

Table 8: Change operation tags for the rationale analysis.

Tag Description

Bug Fixing The commit aimed at fixing a bug.

Enhancement | The commit aimed at implementing an enhancement in the sys-
tem.

New Feature The commit aimed at implementing a new feature in the system.

Refactoring The commit aimed at performing refactoring operations.

performed a similar analysis from the smell-removing commits. As for RQ1, we
first verified whether ML-CSs are mitigated in a smell-removing commit and
identify which are unmitigated, employing the same segmentation adopted and
represented in Table[7]l Afterward, we focused on the smell-removing commits.
We collected the messages of all smell-removing commits using the pattern
matching approach adopted in RQs, relying on the tags in Table [§] to ex-
tract the rationale behind the removal. This analysis allowed us to extract the
refactoring operations addressing ML-CSs. From the set of the smell-removing
commits analyzed, we considered apart the commits that did not perform
changes to ML-CSs but removed them by deleting the files.

RQ4: How long do ML-Specific code smells survive in the code? To understand
the lifetime of each ML-CS instance, we computed the number of commits from
the smell-introducing commit to the smell-removing commit and the period in
days. Given such values, we computed the mean lifespan of each ML-CS type
to understand which smells survive for a longer lifespan.

3.7 Public Data Availability

To ensure the replicability of this work and enable researchers to build upon
our study, we released all materials, including scripts and datasets, in an on-
line appendix hosted in permanent storage [25]. In addition, we included the
GITHUB repository link for CODESMILE: https://github.com/giammaria
giordano/smell_ai/tree/main.

4 Analysis of the Results

This section presents the results of the study. For the sake of clarity, we split
the discussion by research question.

4.1 RQq: How are ML-specific code smells prevalent in ML-enabled systems?
Using our static analysis tool, we identified 8,542 ML-CSs across the analyzed

projects, highlighting the prevalence of technical debt in ML systems. How-
ever, as illustrated in Figure[d] the distribution of these smells is highly uneven.

https://github.com/giammariagiordano/smell_ai/tree/main
https://github.com/giammariagiordano/smell_ai/tree/main

26 Gilberto Recupitd® et al.

3500 3365

3085
3000

N
a
=3
=)

N
=3
=3
=)

1500

Number of Occurrences
2
=3
=3

625

o
=3
=)

418

o I . il .

1 17 2 2

& & <~ >

o

°+ 000 OC,Y' Qeo \Qv ‘,;t’ @@Q é?g

(S
ML-Specific Code Smells

Fig. 3: Number of occurrences of ML-CSs in the analyzed projects. The code smells
considered are: ‘Chain Indexing’ (CIDX), ‘Columns and DataType Not Explicitly Set’
(CDE), ‘Gradients Not Cleared Before Backward Propagation’ (GNC), ‘In-Place APIs
Misused’(IPA), ‘Matrix Multiplication API Misused’ (MMA), textsl‘Memory Not Freed’
(MNF), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘NaN Equivalence Comparison
Misused’ (NAN), ‘PyTorch Call Method Misused’ (PC), ‘TensorArray Not Used’ (TA), and
‘Unnecessary Iteration’ (UI).

350.0 R
I Affected Projects

I Not Affected Projects

300.0

N N
o a
o 4
) °

Number of Projects
&
o
=}

100.0 -

50.0q

0.0 -

CIDX CDE DCA GNC IPA MMA MNF MAP NAN PC ul

ML-Specific Code Smells

Fig. 4: Number of projects affected by ML-CSs. The code smells considered are: ‘Chain
Indexing’ (CIDX), ‘Columns and DataType Not Explicitly Set’ (CDE), ‘Gradients Not
Cleared Before Backward Propagation’ (GNC), ‘In-Place APIs Misused’(IPA), ‘Matrix Mul-
tiplication API Misused’ (MMA), textsl‘Memory Not Freed’ (MNF), ‘Merge API Parameter
Not Explicitly Set’ (MAP), ‘NaN Equivalence Comparison Misused’ (NAN), ‘PyTorch Call
Method Misused’ (PC), ‘TensorArray Not Used’ (TA), and ‘Unnecessary Iteration’ (UI).

The most recurrent smell ‘Column and Datatype Not Explicitly Set’ accounts
for 3,365 instances, representing a significant portion of the total occurrences.
Similarly, a substantial number of TA smells were detected, with 3,085 in-
stances across all projects, indicating widespread inefficiencies in managing
tensor data structures. Moderately frequent smells include 717 instances of

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 27

‘In-Place APIs Misused’ and 418 instances of ‘Gradients Not Cleaned Before
Backpropagation’, both of which have the potential to introduce subtle bugs
or degrade performance in ML pipelines. Furthermore, while 625 instances of
‘Pytorch Call Method Misused’ were detected, the relatively lower detection
performance for this specific smell introduces uncertainty about the actual
prevalence. In addition to these more frequent smells, many other smells were
identified, including 108 instances of ‘Chain Indexing’ and 142 instances of
‘Dataframe Conversion API Misused’. Similarly, ‘Merge API Parameter Not
Explicitly Set’ was observed 60 times. In contrast, very low occurrences were
found for several other smells: 17 instances of ‘Memory Not Freed’, two of ‘Un-
necessary Iteration’, two of ‘NaN Equivalence Comparison Misused’, and only
one instance of ‘Matrix Multiplication API Misused’. While less common, these
low-frequency smells could still have significant implications in specific scenar-
ios and warrant further attention in targeted contexts. To complement the
analysis of absolute occurrences, we examined the prevalence of each ML-CS
across projects. Figure[d]shows the percentage of projects affected by each ML-
CS, providing a broader view of how widely these issues are distributed. The
results highlight notable differences in how smells propagate across reposito-
ries. For instance, ‘Columns and DataType Not Explicitly Set’ affects over half
of the projects (55.49%), suggesting it is a generalizable and widespread issue
across ML projects. In contrast, while similar in total occurrence count, ‘Ten-
sorArray Not Used’ appears in only 15.43% of projects—suggesting that it is
more domain-specific and concentrated in fewer repositories. Similarly, smells
like ‘Gradients Not Cleared Before Backward Propagation’ and ‘In-Place APIs
Misused’ affect 20.18% and 26.41% of projects, respectively, while others such
as ‘Merge API Parameter Not Explicitly Set’ or ‘Matrix Multiplication API
Misused’ are found in less than 5% of the projects. This distribution-based
perspective highlights that while the occurrences of some ML-CSs may be
high, differences are notable in terms of distribution across ML projects, as
some smells—despite high absolute counts—may be localized, while others are
more pervasive and thus require more generalized mitigation strategies.

It is important to interpret the observed prevalence of smells in the context
of the detection performance of our tool, particularly its recall. As shown in
Table [6] recall values vary significantly across smells, ranging from 0.222 for
‘Unnecessary Iteration’ to 1.000 for smells such as ‘Columns and Datatype Not
Explicitly Set’ and ‘NaN Equivalence Comparison Misused’. This variation
suggests that our findings primarily reflect the subset of ML-CSs that fall
within the current detection capabilities of CODESMILE. For instance, the high
number of ‘Columns and Datatype Not Explicitly Set’ instances is consistent
with the tool’s perfect recall for this smell, which increases our confidence in the
reported values. In contrast, smells like ‘DataFrame Conversion API Misused’
and ‘In-Place APIs Misused’, with recall values of 0.475 and 0.636, respectively,
may be underrepresented in the current results. Their actual prevalence could
be significantly higher than what our tool was able to detect. Therefore, while
our approach already uncovers a substantial number of ML-CS instances, it

28 Gilberto Recupito® et al.

Table 9: Wilcoxon Test Results. The code smells are: ‘In-Place APIs Misused’
(IPA), ‘Columns and DataType Not Explicitly Set’ (CDE), ‘TensorArray Not Used’
(TA),‘DataFrame Conversion API Misused’ (DCA), ‘Chain Indexing’ (CIDX), and
‘DataFrame Conversion API Misused’ (MAP).

Smell Smell Statistic P-Value CIliff’s P-Value
A B Delta (6) (Bonferroni)
GNC PC 44818.0 0.3906 -0.0301 1.0

GNC IPA 43158.5 0.0672 -0.0660 1.0

GNC CDE 26967.0 <0.0001 -0.4164*** <0.0001
GNC TA 48557.0 0.1186 0.0508 1.0

GNC DCA 51454.5 0.0002 0.1135 0.0059
GNC CIDX 53285.0 <0.0001 0.1532* <0.0001
GNC MAP 54611.5 <0.0001 0.1819* <0.0001
PC IPA 44505.0 0.3164 -0.0369 1.0

PC CDE 28381.0 <0.0001 -0.3858*** <0.0001
PC TA 49945.0 0.0158 0.0809 0.4423
PC DCA 52857.5 <0.0001 0.1439 0.0002
PC CIDX 54663.5 <0.0001 0.1830* <0.0001
PC MAP 56011.5 <0.0001 0.2122%* <0.0001
CDE TA 67352.5 <0.0001 0.4576** <0.0001

CDE DCA 70469.0 <0.0001 0.5250%** <0.0001
CDE CIDX 72116.0 <0.0001 0.5607*** <0.0001
CDE MAP 73422.5 <0.0001 0.5890*** <0.0001

TA DCA 49008.5 0.0337 0.0606 0.9444
TA CIDX 50809.0 0.0002 0.0996 0.0056
TA MAP 52103.5 <0.0001 0.1276 <0.0001
DCA CIDX 48078.5 0.0902 0.0405 1.0

DCA MAP 49393.5 0.0020 0.0689 0.0566
CIDX MAP 47505.5 0.1535 0.0281 1.0

is likely that the true number of occurrences is considerably higher, especially
for smells with lower recall.

In the following, details of the difference in the prevalence of smells are
presented based on the type of smell, the size of the project, and the adoption of
continuous integration. To ensure a reliable and significant statistical analysis,
we checked the minimum requirements needed to ensure the effectiveness of
each test. Therefore, ‘Matrix Multiplication API Misused’, ‘NaN Equivalence
Comparison Misused’, and ‘Unnecessary Iteration’ are not considered in our
hypothesis testing analysis, with a sample size of less than five [29].

HO: Differences among the prevalence of smells. The results of the Wilcoxon
tests, presented in Table [0] provide a comparative analysis of the statistical
differences between various pairs of code smells. Each comparison is evaluated
based on the Wilcoxon test statistic, p-value, and Cliff’s Delta (4), which
measures the magnitude of the effect. The effect sizes are classified as negligible
(<0.15), small (>0.15, <0.33), medium (>0.33, <0.47), and large (>0.47)
[B], as indicated by asterisks in the table. In the following, the findings are
described relying on these levels.

Comparisons involving ‘Columns and DataType Not Explicitly Set’ con-
sistently reveal significant differences across all pairings, with very low p-

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 29

50 -
o
o
8
a0 .
8 o
§ g
n o
§3o R R B
@ o
t o
3
s2° o o
S §
° : L
10 o R s}
— 5 n 5
3 5
== B o B s == N
s+ s . 3 > « 2 3 >
® Iy & & < & & < A

ML-Specific Code Smells

Fig. 5: Distribution of the occurrences of ML-CSs in affected ML projects in every project
analyzed. The median values of the distributions are reported in bold. The smells are:
‘Chain Indexing’ (CIDX), ‘Columns and DataType Not Explicitly Set’ (CDE), ‘DataFrame
Conversion API Misused’ (DCA), ‘Gradients Not Cleared Before Backward Propagation’
(GNQ), ‘In-Place APIs Misused’ (IPA), ‘Memory Not Freed’ (MNF), ‘Merge API Parameter
Not Explicitly Set’ (MAP), ‘PyTorch Call Method Misused’ (PC), and ‘TensorArray Not
Used’ (TA).

values. These comparisons exhibit medium to large effect sizes, underscoring
the distinctiveness of this smell. For instance, the pairing of ‘Gradients Not
Cleared Before Backward Propagation’ and ‘Columns and DataType Not Ex-
plicitly Set’ shows a medium effect size (6 = -0.4164***), while ‘Columns and
DataType Not Explicitly Set’, compared to ‘DataFrame Conversion API Mis-
used’, results in a large effect size (6 = 0.5250***). These findings highlight
the strong difference between ‘Columns and DataType Not Explicitly Set’
occurrences and other smells. Moreover, the comparisons involving ‘Columns
and DataType Not Explicitly Set’ consistently result in large effect sizes, such
as ‘Columns and DataType Not Explicitly Set’ vs. ‘Chain Indexing’ (§ =
0.5607***) and ‘Columns and DataType Not Explicitly Set’ vs. ‘Merge API
Parameter Not Explicitly Set’ (6 = 0.5890***). Similarly, ‘Merge API Pa-
rameter Not Explicitly Set’ shows significant differences in most comparisons,
with small to moderate effect sizes. For example, ‘Merge API Parameter Not
Explicitly Set’ compared to ‘Gradients Not Cleared Before Backward Propaga-
tion’ yields a small effect size (6 = 0.1819%), while ‘Merge API Parameter Not
Explicitly Set’ compared to ‘PyTorch Call Method Misused’ shows a small
effect size (6 = 0.2122*). These values indicate a notable but less pronounced
prevalence compared to ‘Columns and DataType Not Explicitly Set’.

Certain comparisons, such as those involving ‘TensorArray Not Used’, re-
veal smaller, yet statistically significant, differences.

For instance, the pairing of ‘TensorArray Not Used’ with ‘Chain Indexing’
has a p-value of 0.0056 and a negligible effect size (§ = 0.0996), and ‘TensorAr-
ray Not Used’, compared to ‘Merge API Parameter Not Explicitly Set’, results

30 Gilberto Recupito® et al.

Table 10: Friedman and Nemenyi Test Results Highlighting Differences Between Size-
related Groups. The smells considered are: ‘Gradients Not Cleared Before Backward Propa-
gation’ (GNC), ‘In-Place APIs Misused’ (IPA), ‘Columns and DataType Not Explicitly Set’
(CDE), ‘TensorArray Not Used’ (TA), ‘DataFrame Conversion API Misused’ (DCA),‘Chain
Indexing’ (CIDX), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘PyTorch Call Method
Misused’ (PC).

Friedman Test

GNC IPA CDE TA DCA CIDX MAP PC
0.971 0.200 <0.001 0.031 0.270 0.027 0.011 0.211
Nemenyi Test
Smell S-M S-M (§) S-L S-L (6) M-L M-L (9)
CDE 0.0256 -0.2245* 0.0003 -0.3580** 0.4195 -0.1292
TA 0.9919 -0.0126 0.3739 -0.1453 0.4433 -0.1312
CI 0.8156 -0.0668 0.5172 -0.1196 0.8776 -0.0523
MAP 0.9292 -0.0395 0.5938 -0.1053 0.8156 -0.0654

in a negligible effect size (§ = 0.1276). These findings suggest that ‘TensorAr-
ray Not Used’ has a more limited prevalence than other smells. Finally, some
comparisons did not reveal statistically significant differences or meaningful
effect sizes. For example, the pairing of ‘Chain Indexing’ compared to ‘Merge
API Parameter Not Explicitly Set’ results in a non-significant p-value of 1
and a negligible effect size (§ = 0.0281), underscoring the minimal distinction
between these smells.

Observing the distribution of the projects affected by each ML-CSs, repre-
sented in Figure [5] additional insights emerge. ‘Columns and DataType Not
Explicitly Set” and ‘TensorArray Not Used’ have the highest median values of
5, indicating that they are the most frequently occurring code smells in the
dataset. However, the distribution of ‘TensorArray Not Used’ extends in the
upper quartile to less than 10, and the ‘Columns and DataType Not Explicitly
Set’ distribution shows an extension of the upper quartile to 14 occurrences per
project and a maximum data value of occurrences at 31, highlighting the prob-
ability of having a lot of occurrences of this ML-Cs inside a single ML-project.
‘Merge API Parameter Not Explicitly Set’ and ‘DataFrame Conversion API
Misused’ show moderate median occurrences of 3, reflecting consistent but
less dominant frequencies. PC presents a lower median of 2. In contrast, ‘Gra-
dients Not Cleared Before Backward Propagation’, ‘In-Place APIs Misused’,
and ‘Chain Indexing’ have the lowest medians of 1, suggesting that these are
the least frequent code smells.

H1: Differences of smell prevalence among the project size. To analyze the
difference in size among the projects, stratified as small, medium, and large, we
first applied the Friedman Test to each smell. It is important to note here that
the distributions of smell occurrences are normalized by the number of LOC of
each project. Therefore, this test is not limited to understanding the difference
between the project size but also whether this difference is disproportionate
to the project size.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 31

Table 11: Mann-Whitney U Test and Cliff’s Delta Results for Analyzing Statistically Sig-
nificant Differences of Smells Between CI and Non-CI Projects (Normalized by LOC). The
table shows the following smells: ‘Gradients Not Cleared Before Backward Propagation’
(GNQ), ‘PyTorch Call Method Misused’ (PC), ‘In-Place APIs Misused’(IPA),‘Columns and
DataType Not Explicitly Set’ (DCE), ‘TensorArray Not Used’(TA), ‘DataFrame Conversion
API Misused’(DCA), ‘Chain Indexing’ (CIDX), and ‘Merge API Parameter Not Explicitly
Set’ (MAP).

Smell Mann- Cliff’s Delta P-Value
Whitney U (Bonferroni)

GNC 9629.0 0.0040 -0.1413 0.036

PC 10997.0 0.7074 -0.0194 1.0

IPA 12469.0 0.0387 0.1119 0.34

CDE 12777.0 0.0331 0.1394 0.29

TA 10150.5 0.0319 -0.0948 0.28

DCA 11853.0 0.1270 0.0570 1.0

CIDX 11888.0 0.0517 0.0601 0.46

MAP 11252.0 0.8947 0.0034 1.0

The results of the Friedman Test are reported in Table [[0] Among the
analyses of all the smells, significant overall differences were observed for four
cases: ‘Columns and DataType Not Explicitly Set’ (p < 0.001), TA (p =0.031),
‘Chain Indexing’ (p =0.027), and ‘Merge API Parameter Not Explicitly Set’ (p
=0.011). These findings suggest that these smells are influenced by size-related
group distinctions (Small, Medium, and Large). Conversely, the other smells,
such as ‘Gradients Not Cleared Before Backward Propagation’, ‘In-Place APIs
Misused’, ‘DataFrame Conversion API Misused’ , and ‘PyTorch Call Method
Misused’ , did not exhibit statistically significant overall differences, indicating
that size variations may not be critical in their occurrence.

H2: Differences of smell prevalence among the CI adoption projects. Table
reports the results of the Mann-Whitney U Test and Cliff’s Delta for analyzing
differences in smell occurrences between projects adopting CI and those not. To
ensure the robustness of our findings, we also applied the Bonferroni correction
for multiple comparisons. Findings show that only one ML-specific code smell
(ML-CS) exhibited a statistically significant difference. Specifically, ‘Gradients
Not Cleared Before Backward Propagation’ showed a significant reduction in
CI projects (p = 0.0036), with Cliff’s Delta (§ = —0.1413) indicating a small
effect size. This suggests a slight tendency for CI projects to better manage
gradient clearing compared to non-CI projects. For the other smells analyzed,
some initially appeared significant under the uncorrected test but did not re-
main so after applying the Bonferroni correction. For instance, TensorArray
Not Used’ showed a decrease in CI projects (p = 0.0319, § = —0.0948), with a
small effect size reflecting potentially better tensor management. Conversely,
two smells—‘In-Place APIs Misused’ and ‘Columns and DataType Not Ex-
plicitly Set’—were slightly more prevalent in CI projects. The former showed
a higher occurrence in CI projects (p = 0.0387, 6 = 0.1119), as did the lat-
ter (p = 0.0331, § = 0.1394), both with small effect sizes. These trends may
hint at minor increases, possibly influenced by the fast-paced and iterative na-

32 Gilberto Recupito® et al.

Table 12: Overview of the number of projects, introducing commits, and initial set of
commits.

Smell-Introducing
Commits

Category Projects (Commits) Smell Projects
(Commits)

117 (64,607) 79 (77,101) 1,226
Medium | 118 (71,380) 105 (72,118) 4,482
Large 142 (265,671) 125 (212,599) 11,667
Total 337 (401,658) 309 (361,818) 17,775

ture of CI workflows. No statistically significant differences were observed for
the remaining smells— ‘PyTorch Call Method Misused’, ‘DataFrame Conver-
sion API Misused’, Chain Indexing’, and ‘Merge API Parameter Not Explic-
itly Set’—as all had p-values greater than 0.05. In summary, the statistically
significant results observed are characterized by small effect sizes. While CI
adoption appears to reduce the occurrence of ‘Gradients Not Cleared Before
Backward Propagation’, overall, the relationship between CI practices and
ML-CS occurrences remains subtle and smell-dependent.

? Answer to RQq. The static analysis tool identified 8,542 ML-CSs across
projects, with some smells being significantly more prevalent, highlighting
widespread inefficiencies in ML systems. Smell prevalence varied notably with
project characteristics, such as size, with larger projects exhibiting dispropor-
tionately higher occurrences of certain smells. The occurrence of ‘Gradients
Not Cleared Before Backward Propagation’ shows differences associated with
CI adoption, reflecting variations in development practices.

4.2 RQ1:When ML-Specific Code Smells are introduced

Using CODESMILE, we analyzed 401,658 commits across 337 ML projects,
identifying 17,775 smell-introducing commits from an initial set of 361,818
smelly commits as shown in Table Smells were detected in 91.7% of projects,
with the proportion of smell-introducing commits increasing with project size:
4.38% for small projects, 17.88% for medium projects, and 77.73% for large
projects. The following analyses are based on these data, considering all the
smell-introducing commits found in the three categories of projects.

Analysis on the modification type of the commit. Firstly, when collecting the
file affected by ML-CSs, we also collected information on its change type in
the specific commit to understand when the ML-CSs are introduced. As shown
in Table [I3] the distribution of change types—whether a file was newly cre-
ated or modified—provides insight into how ML-CSs are introduced. The table
presents the percentage of ML-CSs introduced in new files compared to those
introduced in modifications to existing files, offering a deeper understanding
of the contexts in which smells emerge. However, we noted that some removals
may be incidental distinct patterns across different ML-CS types. For certain

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 33

Table 13: Percentage distribution of commit modification type of smell-introducing com-
mits for every ML-CSs. The smells are: ‘Chain Indexing’(CIDX), ‘Columns and DataType
Not Explicitly Set’ (DCE), ‘DataFrame Conversion API Misused’(DCA), ‘Gradients Not
Cleared Before Backward Propagation’ (GNC),‘In-Place APIs Misused’ (IPA), ‘Memory Not
Freed’ (MNF), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘PyTorch Call Method
Misused’ (PC), and ‘TensorArray Not Used’ (TA).

Smell Name Added ‘ Modified | Total |
CIDX 71 (53.79%) 61 (46.21%) | 132
CDE 3044 (41.15%) | 4354 (58.85%) | 7398
DCA 147 (56.76%) 112(43.24%) | 259
GNC 568 (54.56%) 473(45.44%) | 1041
IPA 522(33.38%) 1042 (66.62%) | 1564
MNF 1 (4.35) % 22 (95 65%) 23
MAP 67 (77.91%) 9 (22.09%) 86
PC 658 (53.93%) 562 (46.07%) | 1220
TA 2043 (49.65%) 2985(50.35%) | 5928

smells, a higher proportion of introductions occurs during file modifications.
For example, ‘DataFrame Conversion API Misused’ is introduced in 58.85%
of cases through modifications, and ‘In-Place APIs Misused’ exhibits an even
higher proportion at 66.62%. Similarly, ‘Memory Not Freed’ is mainly intro-
duced during file modifications, with 95.65% of occurrences arising from this
change type.

Conversely, some smells are more frequently introduced when creating new
files. For instance, ‘Merge API Parameter Not Explicitly Set’ has the highest
proportion of introductions in newly created files at 77.91%, indicating that
this smell often arises when new components or modules are added to a project.
Similarly, ‘DataFrame Conversion API Misused’ and ‘Gradients Not Cleared
Before Backward Propagation’ are introduced in 56.76% and 54.56% of the
cases, respectively, during file creation. Certain smells, such as “TensorArray
Not Used’ and ‘Pytorch Call Method Misused’, show a near-equal distribution
between new file creation and modifications, with 49.65% and 53.93% intro-
duced during file creation, respectively. This balanced distribution indicates
that these smells are not strongly associated with a specific type of change
and can emerge in both contexts, reflecting their pervasive nature. Therefore,
while ML-CSs are balanced through the introduction during the addition or
modification of a specific file, the data suggests that ML-CSs are slightly pre-
dominantly introduced during the modification of existing files rather than
creating new ones. This trend among ML-CSs reflects the ongoing develop-
ment and maintenance activities within projects, where incremental changes
to existing functionalities may inadvertently lead to the introduction of smells.

Analysis on activity and time-related metrics. Table [I4] presents the percent-
age distribution of three key metrics: activity level (AL), development time
(DT), and distance from release (DR) for each type of ML-CS. These metrics
provide valuable insights into the contexts and timelines under which ML-CSs
are introduced across projects. The AL metric, which represents the percent-
age of commits since the start of the project at which a smell was introduced,

34 Gilberto Recupito® et al.

Table 14: Percentage distribution of Activity Level, Development Time, and Distance from
Release for smell-introducing commits. The smells are: ‘Chain Indexing’ (CIDX), ‘Columns
and DataType Not Explicitly Set’ (CDE), ‘DataFrame Conversion API Misused’ (DCA),
‘Gradients Not Cleared Before Backward Propagation’ (GNC), ‘In-Place APIs Misused’
(IPA), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘PyTorch Call Method Misused’
(PC), and ‘TensorArray Not Used’ (TA).

Class | CIDX CDE DCA GNC IPA MAP PC TA
10% 5.3% 14.5% 8.3% 7.2% 11.5% 0.0% 3.8% 6.2%
AL 20% 25.0% 12.4% 13.5% 8.5% 4.8% 35.7% 5.4% 9.3%
50% 9.2% 18.7% 14.6% 17.8% 13.3% 0.00% 14.9% 66.7%
>50% | 60.5% | 54.4% | 63.6% | 66.6% | 70.4% | 64.3% | 75.9% | 17.8%
<7d 2.6% 2.1% 5.4% 3.7% 3.4% 0.0% 1.8% 3.8%
pr| <im 5.3% 10.0% 5.4% 4.2% 4.5% 0.0% 2.8% 1.9%
<ly 57.9% | 37.4% 17.2% 34.6% 26.5% 63.6% 35.6% 19.9%
>1y 34.2% 50.5% | 72.0% | 57.5% | 65.6% | 36.4% 59.8% | 74.4%
1d 0.0% 1.1% 0.0% 0.4% 1.3% 0.0% 0.2% 0.5%
DR 7d 2.6% 3.4% 0.0% 0.4% 4.4% 0.0% 1.1% 0.7%
<lm 3.9% 7.7% 6.2% 6.4% 6.9% 21.4% 9.8% 3.7%
>1m 93.4% | 87.8% | 93.7% | 92.7% | 87.4% | 78.6% | 88.9% | 95.1%

shows that most ML-CSs are introduced after substantial project activity. For
most smells, more than 50% of their introductions occur when the activity
level exceeds 50%. Notably, smells such as ‘PyTorch Call Method Misused’
and ‘In-Place APIs Misused’ show the highest proportions in this range, with
75.9% and 70.4% of their occurrences introduced late in a project activity
timeline. Conversely, “TensorArray Not Used’ demonstrates a different pat-
tern, with 66.7% of occurrences introduced earlier when activity levels are at
50% or below, indicating that this smell may emerge more frequently in earlier
project stages.

The DT metric, which measures the time since the project started when
a smell was introduced, highlights clear differences between smell types. Most
smells are introduced more than a year into project development, with partic-
ularly high proportions for ‘DataFrame Conversion API Misused’ at 72.0%,
‘TensorArray Not Used’ at 74.4%, and ‘In-Place APIs Misused’ at 65.6%. On
the other hand, smells such as ‘Chain Indexing’ are more likely to appear
earlier, with 57.9% of occurrences within the first year.

The DR metric, which captures the timing of smell introduction relative
to the next release, shows a strong tendency for ML-CSs to be introduced
long before a release. Across all smell types, over 78.6% of occurrences are
introduced more than one month before a release, with particularly high pro-
portions for ‘TensorArray Not Used’ (95.1%), ‘DataFrame Conversion API
Misused’ (93.7%), and ‘Chain Indexing’ (93.4%).

In summary, combined with the previous analysis based on commit change
type, the data reveals that ML-CSs are predominantly introduced during later
stages of project activity and development, with most smells appearing after
a year since the project started and well before upcoming releases.

Additional Analysis on the distance from the release. A key observation from
our initial analysis was that the majority of ML-CSs tend to be introduced well
before a release, with over 78.6% appearing more than one month in advance.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 35

However, this finding does not account for the varying number of commits
made at different times, which could influence the perceived distribution of
ML-CSs. To better understand this relationship, we conducted a more gran-
ular analysis by normalizing the number of smell-introducing commits with
respect to the total number of commits in each time frame. We computed the
ratio of smell-introducing commits to the total number of commits to the four
different time classes related to the distance from the next release. Table [IH]
presents the resulting percentage distributions, allowing us to compare the rel-
ative likelihood of smell introduction across different stages of development.
The results indicate that the proportion of smell-introducing commits remains
relatively stable over time, with no substantial variations across different time
frames. This suggests that ML-CSs do not necessarily accumulate due to the
pressures of a release but are instead introduced consistently throughout the
development process.

While the overall trend appears stable, some ML-CSs exhibit slight vari-
ations. For example, the smell ‘TensorArray Not Used’ shows the highest
percentage in the day-before-release category (5.0%), suggesting that tensor-
related inefficiencies may emerge more frequently during last-minute code
modifications or final optimizations before deployment. On the other hand,
‘Chain Indexing’ is most frequently introduced more than one month before
release (4.0%), implying that inefficient indexing practices are often estab-
lished early in the development lifecycle. Similarly, smells such as Gradients
Not Cleared Before Backward Propagation’ and ‘In-Place APIs Misused’ also
show their highest percentages in the more-than-one-month category, at 7.0%
and 3.9% respectively. This suggests that these type of issues tend to be present
from stable development. Interestingly, ‘PyTorch Call Method Misused’ dis-
plays a relatively uniform distribution across all time windows, with the highest
value in less than one month before the release (5.2%), but also with a rela-
tively high ratio during the day before the release (5.1%), suggesting that this
issue can occur during stable development activities, but also when a release
is approaching.

Overall, this additional analysis reinforces the idea that the introduction
of ML-CSs is not strongly correlated with the timing of software releases. In-
stead, these smells appear to be an inherent byproduct of ML development,
influenced by iterative experimentation, evolving model architectures, and con-
tinuous code adjustments. However, some insights leads to understand that the
distance from the release when considering the smell ratio could be related to
part of the smells analyzed. Future research on this aspects is needed to extract
the factors that lead the developers to introduce ML-CSs.

36 Gilberto Recupito® et al.

Table 15: Percentage Distribution of the ratio of smell-introducing commits over the to-
tal number of commits among ML-CSs (SR). The smells are: ‘Chain Indexing’ (CIDX),
‘Columns and DataType Not Explicitly Set’ (CDE), ‘DataFrame Conversion API Misused’
(DCA), ‘Gradients Not Cleared Before Backward Propagation’ (GNC), ‘In-Place APIs Mis-
used’ (IPA), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘PyTorch Call Method
Misused’ (PC), and ‘TensorArray Not Used’ (TA).

Total Number of Commits

Commits <1d <7d <lm
401,658 54,819 124,283

Ratio of Smell-Introducing Commits (SR)

Class | CIDX | CDE DCA | GNC | IPA | MAP

<7d 3.8% 4.8% | 0.0% 0.9% 3.2% 0.0% 2.7% 3.8%
<lm 1.8% 4% 2.2% 3.9% 2.5% 0.4% 5.2% | 3.9%
>1m 4.0% 4.3% 1.9% 7% 3.9% | 1.2% 4.9% 4.2%

? Answer to RQ;. ML-CSs are often introduced during the modification
of existing files, as seen with smells like ‘Columns and Datatype Not Explic-
itly Set” (58.85%) and ‘In-Place API Misused’ (66.62%), though some, such
as ‘Merge API Parameter Not Explicitly Set’ (77.91%), are more frequently
introduced during new file creation. Activity and time-related metrics show
that most ML-CSs are introduced in later stages of project development,
often after significant activity and long before releases, reflecting their as-
sociation with maintenance activities and incremental changes to existing
functionalities.

4.3 RQ2: What tasks were performed when the ML-Specific code smells were
introduced?

Using the sets of commits extracted for the previous analysis, we applied a
pattern-matching approach to detect the task operations performed during
the introduction of ML-CSs. Applying the same approach used by Tufano et
al. [34], we analyzed each commit message for the presence of specific keywords
that indicate the nature of the task (e.g., the presence of the keyword “refactor”
to identify refactoring commits). However, it is important to note that a single
commit can contain details related to multiple task types, as different opera-
tions can occur within a single commit. Therefore, a single smell-introducing
commit can belong to one or more categories defined.

Table [16| summarizes the distribution of the number of commit operations
types among ML-CSs. The results show that ML-CSs are most frequently
introduced during new feature tasks, with 9187 commit operations, followed
by Enhancements (8068), bug fixing (4302), and refactoring (5826). Across
individual smells, ‘TensorArray Not Used’ and ‘Columns and DataType Not
Explicitly Set’ are the most frequently introduced, with 3813 and 3357 com-
mits during new feature tasks, respectively. These smells also dominate other
categories, with ‘TensorArray Not Used’ leading in Enhancements (3492) and
‘Columns and DataType Not Explicitly Set’ prevalent in bug fixing (1834)

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 37

and refactoring (2243). Smells like ‘In-Place APIs Misused’ and ‘Gradients
Not Cleared Before Backward Propagation’ also show high frequencies in new
feature tasks, with 766 and 496 commits, respectively, and appear across other
task types. In contrast, less frequent smells like ‘Memory Not Freed’ and
‘Merge API Parameter Not Explicitly Set’ are primarily introduced during
new feature tasks, with 18 and 31 commits, respectively.

Interestingly, refactoring tasks account for a significant number of smell in-
troductions, especially for ‘Columns and DataType Not Explicitly Set’ (2243)
and ‘TensorArray Not Used’ (2234), suggesting that while refactoring aims
to improve quality on one side, developers can add quality issues that can
counterbalance the situation. Going deeper into the analysis, we found some
projects that introduced quality issues while performing changes to refactor a
specific Python module. For instance, in the BrikerMan/Kashgari project, a
commit is delivered to perform refactoring operations in the tokenizer mod-
ulesﬂ A particular refactoring operation added a ‘Columns and DataType
Not Explicitly Set’ smell in the related corpus.py module, resulting in a smell-
introducing commit. A similar situation was found in five other medium and
two large projects while the data results were being inspected. This additional
insight suggests that the primary objective of these refactoring efforts may
have been to improve general code structure, readability, or modularity across
files without explicitly considering ML-specific quality concerns.

However, these commits can inadvertently introduce ML-CSs. Therefore,
this suggests that while the intention behind refactoring activities is generally
positive—aimed at improving code maintainability, readability, and modular-
ity—these efforts can inadvertently degrade the quality of the system from an
ML-specific perspective. This can occur because ML-CSs often arise from the
unique characteristics and complexities of machine learning codebases, which
are not always accounted for in standard refactoring practices.

7 Answer to RQ,. ML-CSs are introduced during new feature tasks, which
account for the highest number of smell-introducing commits. ‘TensorArray
Not Used’ and ‘Columns and Datatype Not Explicitly Set’ are the most fre-
quently introduced among individual smells across all task types. New feature
tasks significantly contribute to their occurrences. Still, refactoring tasks also
account for a substantial number of ML-CS introductions, highlighting the
unintended consequences of quality improvement efforts that do not explicitly
consider ML-specific concerns.

5 Case of a ‘Columns and DataType Not Explicitly Set’ smell-introducing commit when
performing refactoring in BrikerMan/Kashgari project: https://github.com/BrikerMan/K
ashgari/commit/f7£b43d2£3651fbba92ebbebcee8bfd279b0317a

https://github.com/BrikerMan/Kashgari/commit/f7fb43d2f3651fbba92eb6e5cee8bfd279b0317a
https://github.com/BrikerMan/Kashgari/commit/f7fb43d2f3651fbba92eb6e5cee8bfd279b0317a

38 Gilberto Recupito® et al.

Table 16: Occurrences of commit operations performed when introducing ML-CSs. The ta-
ble shows the following smells: ‘Chain Indexing’ (CIDX), ‘Columns and DataType Not Ex-
plicitly Set’ (CDE), ‘DataFrame Conversion API Misused’ (DCA), ‘Gradients Not Cleared
Before Backward Propagation’ (GNC), ‘In-Place APIs Misused’ (IPA), ‘Memory Not Freed’
(MNF), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘PyTorch Call Method Misused’
(PC), and ‘TensorArray Not Used’ (TA). Percentages are computed per row.

Smell Name New Feature Bug Fixing | Enhancement Refactoring
CIDX 72 (32.4%) 32 (14.4%) 70 (31.5%) 48 (21.6%)
CDE 3357 (32.6%) 1834 (17.8%) 2864 (27.8%) 2243 (21.8%)
DCA 116 (26.7%) 88 (20.3%) 122 (28.1%) 108 (24.9%)
GNC 496 (33.4%) 230 (15.5%) 435 (29.3%) 325 (21.9%)
IPA 766 (33.7%) 385 (16.9%) 616 (27.1%) 507 (22.3%)
MNF 18 (60.0%) 3 (10%) 5 (16.6%) 4 (13.3%)
MAP 31 (38.7%) 17 (21.5%) 17 (21.5%) 15 (18.75%)
PC 518 (31.8%) 319 (19.6%) 447 (27.5%) 342 (21%)
TA 3813 (34.9%) 1394 (12.7%) 3492 (31.9%) 2234 (20.4%)
Total 9187 (33.5%) | 4302 (15.7%) 8068(29.5%) | 5826 (21.3%)

4.4 RQs: When and how are ML-specific code smells removed in ML-enabled
systems?

Similar to the analysis performed in RQ; and RQ2, we collected information
on the smell-removing commits. In detail, we started collecting the last commit
for which CODESMILE can detect the presence of the instance of the ML-CSs,
detecting, therefore, the last commit that signals the presence of the ML-CS.
Table [I7] provides an overview of the distribution of projects and commits
containing ML-CSs, focusing on the number of commits where a smell is last
observed. For small projects, 223 out of 64,607 commits represent the last
occurrence of an ML-CS, indicating a relatively low frequency of lingering
smells in smaller codebases. Medium projects show a higher proportion, with
639 out of 71,380 commits marking the last instance of a smell. Large projects
exhibit the highest absolute number of last-smell commits, with 1,518 out of
265,671 commits. Overall, across all 337 projects (401,658 commits), 2,380
commits were identified as the last-smell commits.

However, while the set of commits found represents the last moment the
smell is identified, different cases can be observed. First the last commit of
the project history still denotes the presence of the smell, indicating that the
smell was not removed until the date of this study. Moreover, the smell can
be removed because the file is deleted. Finally, a rename operation of the file
can occur, resulting in the presence of the smell in a new file. To narrow our
analysis on the specific smell-removing commit, we collected this information
using Pydriller to understand how the commit operates in the file of inter-
est for ML-CSs. Table [I§| reflects the percentage of the type of operation the
smell last commit performs. For the goal of this analysis, we consider smell-
removing commits the commit performing a modification or a deletion of the
file. Out of 2,380 file operations analyzed, 1,352 (56.8%) involve file modifica-
tions, indicating that most ML-CSs were resolved through direct edits. Smells
such as ‘DataFrame Conversion API Misused’ (637 modifications, 54.4%) and

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML

Table 17: Overview of the number of projects, removing commits, and initial set of commits.

Category Projects (Commits) Smell Projects | Smell last Commit
(Commits)

Small 117 (64,607) 79 (77,101) 223

Medium 118 (71,380) 105 (72,118) 639

Large 142 (265,671) 125 (212,599) 1518

Total 337 (401,658) 309 (361,818) 2380

Table 18: Counts of file operations performed when removing ML-CSs (rename, delete,
modify, not modify) by smell name across all project sizes. The smells are: ‘Chain Indexing’
(CIDX), ‘Columns and DataType Not Explicitly Set’ (CDE), ‘DataFrame Conversion API
Misused’ (DCA), ‘Gradients Not Cleared Before Backward Propagation’ (GNC), ‘In-Place
APIs Misused’ (IPA), ‘Memory Not Freed’ (MNF), ‘Merge API Parameter Not Explicitly
Set” (MAP), ‘PyTorch Call Method Misused’ (PC), and ‘TensorArray Not Used’ (TA).

Smell Name @ Delete | Modify Rename | not modified | Total
CIDX 0 6 12 0 18
CDE 4 637 431 99 1171
DCA 2 14 4 1 21
GNC 0 7 119 8 204
IPA 2 218 58 16 294
MNF 0 6 1 0 7
MAP 0 4 2 0 6
PC 0 137 107 10 254
TA 9 253 132 9 403
Total 17 1352 868 143 2380

‘TensorArray Not Used’ (253 modifications, 62.8%) show focused maintenance
efforts, while ‘In-Place APIs Misused’ exhibits the highest proportion of mod-
ifications (218, 74.1%). In contrast, smells like ‘Chain Indexing’ show fewer
modifications (6 out of 18, 33.3%) and a higher reliance on renaming (66.7%),
suggesting that certain smells are more often addressed by file restructuring
than direct resolution. Based on this analysis, we will consider the 1,352 file
modifications as smell-removing commits in the subsequent evaluation.

Analysis on activity and time-related metrics. Similar to the smell-introducing
commits, we collected information about activity level (AL), development time
(DT), and the distance from the next release (DR) to understand when ML-
CSs are removed by developers, summarized in Table [[9] Looking at the AL
metric, similar to smell-introducing commits, most ML-CSs are removed late
in the project activity timeline, with most removals occurring after 50% of
project commits. Notably, ‘PyTorch Call Method Misused’ has the high-
est proportion of removals in this range (91.9%), followed by ‘In-Place APIs
Misused’ (80.6%) and ‘Merge API Not Explicitly Set’ (74.3%). However, the
distinct pattern observed for TA, where most removals (64.6%) occur earlier
in the activity timeline, indicates that certain smells may be considered for
resolution in the earlier phases of a project. Focusing on the development
time, for most ML-CSs, smell removal predominantly occurs over a year after
the project starts. Smells like ‘DataFrame Conversion API Misused’,‘In-Place

40 Gilberto Recupito® et al.

Table 19: Percentage distribution of Activity Level, Development Time, and Distance from
Release for smell-removing commits. The smells considered are: ‘Chain Indexing’ (CIDX),
‘Columns and DataType Not Explicitly Set’ (CDE), ‘DataFrame Conversion API Misused’
(DCA), ‘Gradients Not Cleared Before Backward Propagation’ (GNC), ‘In-Place APIs Mis-
used’ (IPA), ‘Merge API Parameter Not Explicitly Set’ (MAP), ‘PyTorch Call Method
Misused’ (PC), and ‘TensorArray Not Used’ (TA).

Class | CIDX CDE DCA GNC IPA MAP PC TA
10% 1% 14.9% 7.2% 7.2% 1.4% 0.0% 3.4% 4%
AL 20% 11.5% 9.8% 13.5% 9% 6.7% 23.5% 1.41% 6.3%
50% 28% 17.3% 14.6% 18.2% 11.3% 2.2% 5% 64.6%
>50% | 61.6% | 56.4% | 63.5% | 61.8% | 80.6% | 74.3% | 91.9% | 19.9%
<7d 0% 0% 0% 0% 3.4% 0.0% 1.9% 3.8%
pr| <lm 0% 5.7% 0% 0% 4.5% 0.0% 2.8% 1.9%
<ly 50% 29.5% 20% 50% 13.5% 60.6% | 6.6% 37.5%
>1y 50% 64.7% | 80% 50% 86.4% | 39.4% 80% 62.5%
1d 0% 0% 0% 0% 0% 0% 0% 12.5%
pr| 74 2.4% 5.6% 0% 33.3% 3.3% 0% 0% 25%
<lm 6% 7.5% 6.2% 0% 8.4% 100% 13.3% 12.5%
>1m 91.6% | 86.8% | 93.8% | 66.7% | 88.1% | 0% 86.6% | 50%

API Misused’ and ‘PyTorch Call Method Misused’, with over 70% of removals
happening after the first year, reflect this trend. In contrast, smells such as
‘Chain Indexing’, removed within the first year and after that (50%), suggest
that some issues are addressed sooner, likely due to their ease of resolution.
Finally, a strong trend is observed across all ML-CSs when analyzing the DR
metric, with over 78.57% of removals occurring more than one month before a
release. Smells such as ‘PyTorch Call Method Misused’ (86.8%), ‘DataFrame
Conversion API Misused’ (93.8%), and ‘Chain Indexing’ (91.6%) are partic-
ularly likely to be resolved well in advance of releases, suggesting that these
smells start to be resolved after a long time during periods of active mainte-
nance rather than close to release deadlines. Overall, as for smell-introducing
commits, these results suggest that ML-CSs are typically addressed during
active and stable maintenance periods rather than in rushed, release-critical
phases. While most smells are resolved later in the project lifecycle, certain
smells, such as ‘TensorArray Not Used’ and ‘Gradients not Cleared Before
Backward Propagation’, show distinct patterns of early removal, emphasizing
variability in resolution timelines based on the type of smell.

Tasks performed during the removal of ML-CSs. Table 20] summarizes the
number of change-type operations (New Feature, Bug Fixing, Enhancement,
and Refactoring) associated with smell-removing commits grouped by smell
name. These results provide insights into the context and purpose of the
changes to address ML-CSs. New feature changes are most frequently observed
for ‘Columns and DataType Not Explicitly Set’ (232 changes), ‘In-Place APIs
Misused’ (91 changes), and ‘TensorArray Not Used’ (98 changes), indicating
that smell removals often accompany the addition of new functionality in these
cases. Bug Fixing changes account for 459 instances, with the highest contri-
butions from ‘Columns and DataType Not Explicitly Set’ (179 changes) and
‘TensorArray Not Used’ (90 changes), suggesting a strong association between
smell removal and resolving defects, particularly for these smells. Enhance-

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 41

Table 20: Number of change type operations grouped by smell name. The smells are:
‘Chain Indexing’ (CIDX), ‘Columns and DataType Not Explicitly Set’ (CDE), ‘DataFrame
Conversion API Misused’ (DCA), ‘Gradients Not Cleared Before Backward Propagation’
(GNQ), ‘In-Place APIs Misused’ (IPA), ‘Memory Not Freed’ (MNF), ‘Merge API Parameter
Not Explicitly Set’ (MAP), ‘PyTorch Call Method Misused’ (PC), and ‘TensorArray Not

Used’ (TA).

Smell Name New Feature Bug Fixing Enhancement Refactoring
CIDX 3 3 3 2
CDE 232 179 299 278
DCA 4 5 7 6
GNC 37 27 39 37
IPA 91 78 99 99
MNF 2 2 2 3
MAP 1 1 1 1
PC 75 74 81 7
TA 98 90 153 123
Total 543 459 684 626

ment changes are the most common type overall, with 684 instances. Smells
such as ‘Columns and DataType Not Explicitly Set’ (299 changes), ‘Tenso-
rArray Not Used’ (153 changes), and ‘In-Place APIs Misused’ (99 changes)
show significant numbers of enhancements committed during smell removal,
reflecting efforts to improve the quality or functionality of the code. Refactor-
ing changes, totaling 626 instances, are prevalent for smells like ‘Columns and
DataType Not Explicitly Set’ (278 changes), ‘TensorArray Not Used’ (123
changes), and ‘In-Place APIs Misused’ (99 changes), highlighting a focus on
improving code structure and maintainability as part of the removal process.
The smell-removing commits span various change types, with enhancements
and refactoring commits representing the majority, indicating that the resolu-
tion of ML-CSs often aligns with broader efforts to improve code functionality
and structure rather than being isolated changes. Smells such as ‘Columns and
DataType Not Explicitly Set’, ‘TensorArray Not Used’, and ‘In-Place APIs
Misused’ consistently show the highest number of change operations across all
categories, emphasizing their prominence in the introduction and resolution of
ML-CSs.

However, these operations may not always be explicitly aimed at resolving
the ML-CS but may involve other changes where the ML-CS transforms into
a different form. For instance, in the project RTIInternational/gobbli, a
refactoring commit described as “improving example prediction formatting in
evaluate app” inadvertently removed a ‘Columns and DataType Not Explicitly
Set’ smellﬁ This removal involved replacing a DataFrame used to display per-
formance metrics with a built-in function, show metrics (). While this change
eliminated the ‘Columns and DataType Not Explicitly Set’ smell, highlight-
ing readability concerns, it did not necessarily improve code readability, as the
core issue remained unaddressed. Similar cases were observed in 14 projects:
eight small projects, three medium projects, and three large projects.

6 Case of a ‘Columns and DataType Not Explicitly Set’ smell-removing commit when
performing enhancement in RTIInternational/gobbli project:https://github.com/RTIInte
rnational/gobbli/commit/b93d184c610c3ae779607679501bdbldafd30b28

https://github.com/RTIInternational/gobbli/commit/b93d184c610c3ae779607679501b4b1dafd30b28
https://github.com/RTIInternational/gobbli/commit/b93d184c610c3ae779607679501b4b1dafd30b28

42 Gilberto Recupito® et al.

The findings suggest that addressing ML-CSs is often integrated into broader
development activities, such as enhancements, refactoring, and bug fixing,
rather than explicitly targeted. However, the frequent unintentional nature of
smell removal highlights a potential gap in awareness or prioritization of ML-
CSs during routine development, underscoring the need for tools and practices
that not only detect ML-CSs but also guide developers in addressing them
intentionally and effectively. Moreover, the late-stage introduction and resolu-
tion of smells like ‘Columns and DataType Not Explicitly Set’, “TensorArray
Not Used’, and ‘In-Place APIs Misused’ in both introduction and resolution
emphasize their role in shaping the maintainability and functionality of ML-
enabled systems, making them key targets for future research and tool devel-
opment. However, we noted that some removals may be incidental—resulting
from structural changes, such as file renaming or refactoring—rather than de-
liberate efforts to eliminate the smells. Therefore, these findings should be
interpreted with caution with respect to the intention of the developer.

> Answer to RQjs. The removal of ML-CSs is often integrated into routine
development activities, with 56.8% of smell removals occurring through file
modifications, particularly for smells like ‘Columns and DataType Not Ex-
plicitly Set’ (54.4%), ‘TensorArray Not Used’ (62.8%), and ‘In-Place APIs
Misused’ (74.1%). Most ML-CSs are resolved during stable maintenance peri-
ods, highlighting a preference for addressing these issues outside time-critical
phases. Most ML-CS removal activities include enhancements (684 instances)
and refactoring (626 instances). Smells like ‘Columns and DataType Not
Explicitly Set,” ‘TensorArray Not Used,” and ‘In-Place APIs Misused’ dom-
inate these categories, suggesting these smells are closely associated with
maintainability-related activities, such as enhancements and refactoring.

4.5 RQ,: How long do ML-Specific code smells survive in the code?

The survival time of ML-CSs was analyzed using two metrics: commit activity
(CA), expressed as a percentage of the project lifetime in commits, and project
survivability time (ST), measured in days. Results are summarized in Table[21]
These metrics provide a detailed understanding of how long ML-CS instances
persist in code before their removal, offering insights into the persistence of
smells from both activity and time perspectives.

The results reveal that most ML-CSs are resolved within the first 10% of
project commit activity. For example, ‘Columns and Datatype Not Explicitly
set’” (90.6%), ‘TensorArray Not Used’ (98.0%), and ‘In-Place API Misused’
(96.6%) disappear relatively early, suggesting they often disappear during the
early phases of code evolution. However, for some ML-CSs, the proportion
of smells surviving for a longer duration increases with additional commit
activity. For instance, ‘Merge API Not Explicitly Set’ (66.7%) and ‘Pytorch
Call Method Misused’ (57.0%) demonstrate slower resolution rates, with a
substantial percentage persisting beyond the early phases of project activity

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 43

‘Merge API Parameter Not Explicitly Set’, in particular, stands out for its
longevity, with 33.3% of instances persisting beyond 50% of the project commit
activity, suggesting the inherent complexity of the project.

In terms of time, most ML-CSs tend to disappear within one year of
their introduction. Smells such as ‘Merge API Parameter Not Explicitly Set’
(75.0%), TPA (63.2%), and ‘PyTorch Call Method Misused’ (55.4%) tend to
have shorter lifespans. However, a subset of smells exhibits extended survival
times, with ‘TensorArray Not Used’ (36.4%) and ‘PyTorch Call Method Mis-
used’ (18.5%) remain detectable in the codebase for over a year in a significant
portion of cases. These longer lifespans may indicate delayed refactoring or
more complex technical debt. In contrast, simpler smells such as ‘DataFrame
Conversion APT Misused’ (25.0%) and ‘Chain Indexing’ (16.7%) often disap-
pear within the first seven days. These results indicate that most ML-CSs tend
to have a short lifespan in projects, often disappearing within the first 10% of
commit activity or within one year of being introduced. However, some types
of smells persist significantly longer, indicating differences in how long these
smells remain in code depending on their complexity. These results indicate
that while most ML-CSs follow a common pattern of short lifespan, lasting less
than a year and less than 10% of project commit activity, certain deviate from
this trend. The observed variations in persistence across different smells un-
derscore their unique characteristics and the challenges associated with their
resolution under specific circumstances.

To assess whether developers actively remove ML-CSs over the lifetime of
projects, we conducted a cumulative trend analysis of introduced, removed,
and net active smells for each smell type (Figure @ The results show that
while some removals occur, the general trend across all smells is a steady net
increase in active smells over time. For instance, ‘Columns and DataType Not
Explicitly Set’ and “TensorArray Not Used’ exhibit rapid accumulation of in-
troduced instances (green line), with removals (red line) trailing far behind.
This leads to a continually rising net active count (orange line). ‘Gradients Not
Cleared Before Backward Propagation’ shows more evidence of removal activ-
ity compared to other smells, yet the number of introduced instances still out-
weighs removals. Similarly, ‘In-Place APIs Misused’ and ‘PyTorch Call Method
Misused’ follow consistent upward trends in net active smells, with limited ev-
idence of reduction. ‘DataFrame Conversion API Misused’ and ‘Merge API
Parameter Not Explicitly Set’ show a slight increase in the removal of ML-
CSs over time, implying that these smells tend to persist once introduced. Less
frequently occurring smells such as ‘Memory Not Freed’ and ‘Chain Indexing’
also exhibit low levels of removal and accumulation, although their limited
prevalence makes broader conclusions difficult.

In general, this cumulative analysis highlights that ML-specific smells, once
introduced, are rarely addressed or removed. The persistently growing net
active counts suggest that developers do not consistently engage in targeted
refactoring to manage ML-CSs, leading to their accumulation over time.

44 Gilberto Recupito® et al.

Table 21: Percentage distribution of the survival time of ML-CSs from their to intro-
duction to their removal in terms commit activity(CA) and Survival Time (ST). The table
shows the following smells: ‘Chain Indexing’ (CIDX),‘Columns and DataType Not Explicitly
Set’ (CDE), ‘DataFrame Conversion API Misused’ (DCA), ‘Gradients Not Cleared Before
Backward Propagation’ (GNC), ‘In-Place APIs Misused’ (IPA), ‘Merge API Parameter Not
Explicitly Set’ (MAP), ‘PyTorch Call Method Misused’ (PC), and ‘TensorArray Not Used’
(TA).

<10% | 100.0% | 90.6% | 88.9% | 84.2% | 96.6% | 66.7% | 57.0% | 98.0%
CA <20% | 0.0% 4.1% 11.1% 5.0% 2.3% 0.0% 11.8% 1.6%
<50% | 0.0% 4.2% 0.0% 7.9% 1.0% 0.0% 30.9% 0.4%
>50% | 0.0% 1.1% 0.0% 3.0% 0.1% 33.3% 0.4% 0.0%
<7d 16.7% 12.8% 25.0% 8.1% 11.0% 0.0% 7.2% 4.7%
g | <lm 33.3% 14.2% 18.8% 15.1% 13.7% 25.0% 18.9% 11.5%
<ly 50.0% 52.6% | 31.3% | 53.5% | 63.2% | 75.0% | 55.4% | 47.4%
>1ly 0.0% 20.4% 25.0% 23.3% 12.1% 0.0% 18.5% 36.4%

¢? Answer to RQ,. The majority of ML-CSs are resolved within the
first 10% of project commit activity, with high-resolution rates observed
for ‘Columns and Datatype Not Explicitly set’ (90.6%), ‘TensorArray Not
Used’(98.0%), and ‘In-Place API Misused’ (96.6%). While most ML-CSs ex-
hibit short lifespans, their persistence varies significantly depending on their
complexity and context. Proactive management strategies are crucial to ad-
dress longer-living smells and prevent the accumulation of technical debt.

5 Discussion and Take-Away Messages

The findings of this study have several implications for both researchers and
practitioners, highlighting how ML-CSs emerge, evolve, and can be addressed
effectively in ML-enabled systems.

On the Smell Introduction. Our findings regarding RQ; reveal that
code smells are frequently introduced during file modifications, underscoring
the importance of prioritizing quality assurance efforts that focus on moni-
toring and managing code changes during the maintenance phases of software
development. Integrating ML-CS detectors into Continuous Integration and
Continuous Delivery (CI/CD) pipelines could be a proactive solution to mit-
igate these risks effectively. Such integration would help identify and address
code smells early, preventing their inadvertent introduction. The presence of
code smells not only degrades the maintainability of the codebase—such as
diminished readability in the case of ‘Merge API Parameter Not Explicitly
Set” smells—but can also have far-reaching implications on software perfor-
mance and reliability. For instance, certain smells like ‘Chain Indexing’ can
adversely affect system performance, while others can significantly increase
the likelihood of defects. These defects, in turn, may lead to extended devel-
opment cycles, delayed time-to-market, and escalating costs, all of which pose
significant risks to the project’s success.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 45

—— Introduced Removed Net Active
Chain i Columns and Datatype Not icitly Set Dataframe Conversion API Misused
135 7200 200
6400
o 5600 210
105 180
90 4800
75 4000 150
60 3200 120
a5 2400 90
30 1600 60
) 800 e 30
—
° 0 0
4 Gradients Not Cleared Before Backward i In Place APIs Misused ”n Memory Not Freed
€ 1600
F]
o 900 1400 18
v
= 750 1200 15
M
5 600 1000 12
o 450 8oo 9
2 600
300 6
© a00
F]
£ /——/_ 200 e 3 _/_/
3 o ° o
Merge API Not icitly Set Pytorch Call Method Misused Tensor Array Not Used
80 1200 5600
70 100 4800
200
60 4000
750
50 “ 3200
a0 I 600
30 J 450 2400
20 // 300 1600
150 800
10 /__ /l —
e — 0 o

0 800 1600 2400 3200 4000 4800 5600 0 800 1600 2400 3200 4000 4800 5600 0 800 1600 2400 3200 4000 4800 5600
Days Since Project Start

Fig. 6: Cumulative trends of ML-CSs over the project lifetime. The figure presents the
cumulative count of introduced (green), removed (red), and net active (orange) ML-specific
code smells across projects over time. The code smells considered are: ‘Chain Indexing’
(CIDX), ‘Columns and DataType Not Explicitly Set’ (CDE), ‘Gradients Not Cleared Be-
fore Backward Propagation’ (GNC), ‘In-Place APIs Misused’(IPA), ‘Matrix Multiplication
API Misused’ (MMA), textsl‘Memory Not Freed’ (MNF), ‘Merge API Parameter Not Ex-
plicitly Set” (MAP), ‘NaN Equivalence Comparison Misused’ (NAN), ‘PyTorch Call Method
Misused’ (PC), ‘TensorArray Not Used’ (TA), and ‘Unnecessary Iteration’ (UT).

> Take-Away Message

Frequent introduction of code smells during maintenance highlights the
need for robust quality assurance practices. By integrating ML-specific
smell detectors into CI/CD pipelines, the community can enhance code
maintainability, boost system performance, and mitigate risks, ultimately
supporting more reliable and efficient software development.

Moreover, the compounded effect of poor code quality can result in com-
petitive disadvantages. Lengthened development timelines and increased costs
could lead to being outperformed by competitors, potentially endangering the
sustainability of the software development community or even risking its disso-
lution. Proactively addressing ML-specific code smells is not merely a technical
necessity but a strategic imperative for sustaining software quality, meeting
market demands, and ensuring long-term project viability. Our findings from
RQ; indicate that smell emergence is closely tied to highly frequent activities
such as new feature development, system enhancements, and maintenance.
Such a frequency highlights the need for tailored interventions beyond reac-
tive detection and mitigation of smells. Integrating ML-specific smell detection

46 Gilberto Recupito® et al.

tools, e.g., CODESMILE, into CI/CD pipelines may enable fast identification
of code smells during development. At the same time, integrating these tools
into IDEs can offer developers immediate, real-time feedback during imple-
mentation.

Moreover, organizations should foster a culture of preventive quality as-
surance by equipping developers with targeted training on smell-prone tasks.
This training should explain the nature of ML-CSs and provide actionable
strategies for avoiding them during common ML pipeline activities. This is
also potentially interesting for researchers working on source code quality as-
sessment, who may contribute by devising and recommending guidelines and
instruments that may help avoid introducing code smells in the first place.

Besides education, integrating ML-specific considerations into regular code
reviews can effectively complement automated detection. These considerations
should prioritize critical parts of the pipeline, such as data preprocessing and
model evaluation scripts, where the introduction of smells is more likely to have
cascading effects on system performance and reliability. Unlike standard code
reviews, these sessions should be designed to specifically address the unique
demands of ML-enabled systems, making them more effective in mitigating
smell-related risks. This represents a challenge for researchers in the field of
code review, who might be interested in devising novel reading techniques and
manual analysis procedures that may better support developers when assessing
the quality of ML-enabled systems.

Furthermore, organizations can plan smell-specific quality checkpoints along-
side major project milestones to sustain these efforts over time. For instance,
as part of post-feature integration or pre-release evaluations, focused reviews
of components with a history of smell introduction could prevent issues from
persisting in the codebase. These checkpoints and regular refactoring sessions
can ensure that smells introduced during earlier phases do not accumulate
technical debt or compromise system maintainability.

> Take-Away Message

Proactively addressing code smells is not just a technical necessity but a
strategic imperative to ensure long-term viability and market competitive-
ness. With smells frequently emerging during tasks like new features, en-
hancements, and maintenance, organizations must promote best practices
for feature implementation and conduct regular code reviews integrating
ML-specific considerations to mitigate these risks effectively.

On the Smell Removal. Our findings indicate that ML-CSs are more
frequently observed to disappear during stable maintenance periods, which
may reflect a natural tendency for code modifications—such as refactoring or
clean-up activities—to occur outside of time-critical phases like intensive fea-
ture development or bug-fixing sprints. This behavior indicates an opportunity
to optimize the design of smell detection tools to account for the temporal dy-
namics of software development. For instance, CI pipelines could be configured
to adaptively skip smell detection checks during periods of high commit activ-

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 47

ity, reducing overhead and allowing developers to focus on more urgent tasks.
Our findings suggest that a time-aware smell detection may minimize the risk
of disrupting productivity while ensuring that code quality is still prioritized
during less critical phases.

> Take-Away Message

Most ML-specific code smells are resolved during stable maintenance peri-
ods, suggesting the need for time-aware detection tools that adapt to devel-
opment intensity. These may optimize resource allocation, ensuring smells
are addressed without hindering progress during high-intensity phases.

Our results suggest that the removal of ML-specific code smells (ML-CSs)
often occurs opportunistically during routine development tasks, reflecting the
concept of “floss refactoring”—incremental code improvements made along-
side other primary activities such as feature implementation or bug fixing [19].
This behavior highlights the importance of lightweight, seamlessly integrated
quality assurance tools that align with developers’ natural workflows.

To support this, future tools should embed actionable, context-aware feed-
back directly into development environments (e.g., IDEs), minimizing disrup-
tion. Tailoring recommendations to the specific libraries or stages of the ML
pipeline can further enhance relevance. Additionally, tools could be designed
to recognize when developers are engaged in adjacent refactoring or cleanup
tasks, offering timely suggestions for addressing ML-CSs. Such human-centric
design can make quality assurance more intuitive and effective in practice.

The integration of smell removal into routine development activities also
reflects the pragmatic nature of developer behavior. Addressing ML-CSs along-
side other tasks reduces the overhead of separate refactoring efforts and ensures
that smells are addressed as part of ongoing development. This highlights the
need for tools that can efficiently identify and assist in resolving smells in
a way that complements the developer’s natural workflow. This observation
recalls the need for further human-centric adjustments in quality assurance
tools. Such adjustments could enable these tools to provide recommendations
not only based on the time of development activities, but also when individual
developers feel the need to improve code quality. For example, incorporat-
ing mechanisms that detect when developers are refactoring adjacent code or
engaging in cleanup tasks could trigger contextually relevant suggestions for
addressing ML-CSs. This may represent a way to make quality assurance more
intuitive and less intrusive within the development process.

> Take-Away Message

The removal of ML-specific code smells is frequently embedded in routine
development activities, confirming the need for lightweight and seamless
tools that facilitate incremental quality improvements. This supports the
broader trend of floss-refactoring, where developers opportunistically ad-
dress quality issues without disrupting their primary tasks.

48 Gilberto Recupito® et al.

On the Smell Survivability. The findings of RQy4 suggest that certain
ML-specific code smells, such as ‘In-Place APIs Misused’ and ‘TensorArray
Not Used’, are highly persistent in ML-enabled systems. These smells likely
significantly negatively impact defect proneness and model efficiency, high-
lighting the critical need to prioritize code smells based on their potential
impact while considering the project scope and goals. For example, in systems
where ML components play a critical role, e.g., healthcare systems, addressing
smells related to defect proneness and efficiency can not only enhance the reli-
ability of the software but also improve its ability to make rapid and accurate
decisions. Additionally, our findings emphasize the importance of the Software
Quality Assurance for Artificial Intelligence (SQA4AT) community developing
automated refactoring solutions to address ML-specific code smells. Such tools
should be seamlessly integrated into development workflows, such as IDE plu-
gins capable of automatically refactoring source code to mitigate ML-CSs.
These solutions could leverage trained Large Language Models (LLMs), in-
corporate tailored pre-existing smell removal strategies, or utilize a catalog
of example-based smell mitigation techniques. Furthermore, the cumulative
trend analysis supports the key insight that while some ML-CSs are removed,
the overall number of active smells continues to increase across projects. This
suggests that current maintenance activities do not proportionally offset smell
introductions, leading to sustained smell survivability over time. These find-
ings indicate that existing quality assurance practices may not be sufficient to
systematically manage ML-CSs, reinforcing the need for proactive detection
and mitigation strategies. Addressing this issue could help prevent long-term
technical debt accumulation in ML-based systems, ensuring maintainability
and performance over extended project lifetimes.

> Take-Away Message

Prioritizing the mitigation of high-impact smells is essential for enhancing
system reliability and decision-making capabilities. The SQA4AI commu-
nity must focus on developing automated refactoring tools that can be
integrated into workflows.

When Code Smells Meet ML. Broadening the scope of the discussion,
we observe that our findings differ from those reported in studies of tradi-
tional code smells. Our analysis, based on tasks involving ML-CSs, revealed
that a significant proportion of refactoring activities are associated with the
introduction of ML-CSs. This finding aligns with observations made by Tu-
fano et al. [34], who reported that up to 11% of the instances of traditional
code smells are introduced during refactoring activities. This overlap suggests
that the introduction of ML-CSs is not solely the result of suboptimal coding
practices but can also emerge during efforts to improve or modify code.

Additionally, the shorter lifespan of ML-CSs, as highlighted in the analysis
for RQ4, raises interesting questions about their role in the overall quality of
ML systems. Unlike traditional code smells, which often persist until explicitly
addressed, ML-CSs may be resolved incidentally through unrelated changes.

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 49

However, this transient nature does not diminish their impact; unresolved ML-
CSs, even if short-lived, can contribute to technical debt, particularly in rapidly
evolving ML projects where iterative experimentation is key. In conclusion,
while ML-CSs share some characteristics with traditional code smells, their
domain-specific origins, dynamic nature, and unique patterns of persistence
and resolution highlight the need for specialized approaches to address them.

? Take-Away Message

ML-CSs represent a distinct class of quality issues that require tailored
detection, management, and resolution approaches. By understanding their
unique characteristics and incorporating adaptive practices, developers can
mitigate their impact and maintain the quality and sustainability of ML
systems in the face of evolving requirements and iterative workflows.

6 Threats to Validity

This section discusses possible threats to validity that could impact our results
and the strategies we adopted to mitigate them.

Threats to Construct Validity A potential threat to validity concerns the de-
tection of ML-CSs. Specifically, a rule-based detection approach may lead to
false positives and negatives. To mitigate this threat, we adopted a pattern-
matching strategy leveraging an Abstract Syntax Tree (AST) designed to re-
flect the definitions provided by Zhang et al. [41]. We opted for deterministic
static analysis as a preliminary approach to detecting ML-CSs. While more
advanced, state-of-the-art technologies (e.g., LLM-based detection methods)
might offer more optimal results in some cases, their inherent indetermin-
ism can lead to a lack of control over the detection process. By contrast, our
static analysis approach, grounded in deterministic and rule-based conditions,
provides a simple, explainable, and robust method for identifying ML-CSs.
To enhance the reliability of our approach, we manually validated the tool’s
accuracy using a statistically significant sample of detected ML-CS instances.
While this method limits detection to the set of smells explicitly defined in the
literature, it represents an essential starting point for creating a comprehensive
quality assessment tool for ML-enabled systems.

Another threat to construct validity concerns potential refactoring opera-
tions that move a smell from one file to another. As currently implemented,
CodeSmile does not track the evolution of individual smell instances across
commits. Consequently, when a code smell is relocated—e.g., due to refactor-
ing—the detector interprets it as two separate events: a smell removal in the
source file and a smell introduction in the target file. This design choice may
lead to overestimating the frequency of smell introductions and removals, po-
tentially skewing some of the derived metrics. It is important to note that this
limitation is not unique to our approach. Accurately tracking code artifacts
over time remains a known and non-trivial challenge in the field of software

50 Gilberto Recupito® et al.

repository mining. Prior studies—for example, Tufano et al. [35], Palomba
et al. [22], and Ratzinger et al. [24]—have similarly acknowledged how code
movements, renamings, and refactorings can complicate the analysis of long-
term code quality patterns, including the persistence and evolution of code
smells or defects.

Another potential threat relates to data collection, specifically the risk of
mismatches between the collected data and the properties of the projects under
analysis, including challenges such as incomplete or inconsistent project his-
tories, variations in repository structures, and the potential presence of noise
in the extracted data. To address this concern, we employed PYDRILLER, a
widely-used tool for mining repositories, to ensure a systematic and reliable
data collection process. Its application in several prior studies [1112827] vali-
dates its reliability and accuracy, further reinforcing our choice. By relying on a
tool with a proven track record, we reduced the likelihood of errors introduced
during data extraction, improving the data collection procedures.

Threats to Internal Validity In the context of survivability analysis (RQy), we
excluded the smells developers could not fix because of lack of time. In other
words, we removed smell-introducing commits from our analysis that were too
close to the last commit of the project by excluding those instances whose
smell-introducing date summed to the median removal time is beyond the
end of the commit history. Another threat regards smell-removing commits.
We considered a smell removed at commit ¢; when the instance is detected
at commit ¢;_; but no longer detectable at commit ¢;. While this approach
provides a practical means of tracking smell removal, it may introduce some
imprecision. Specifically, refactoring activities might not directly remove the
ML-CS in commit ¢;, but instead modify the source code over multiple commits
until it no longer matches the detection rules. This potential imprecision could
also stem from limitations in the detection tool itself. Although our evaluation
indicates that the tool is sufficiently sound, there remains a possibility that
some removals were the result of false positives detected by CODESMILE.

Threats to Ezternal Validity The main threat to the generalizability of the
results regards the dataset we used. We are conscious that the project selec-
tion is a critical experiment component. Therefore, we relied on the NICHE
dataset [39], i.e., a large dataset that contains only real ML-enabled systems.
We analyzed 337 projects and over 400k commits, proposing a large empirical
study. The projects are provided from different contexts and have different
characteristics (e.g., size, number of files). We know the results could not di-
rectly apply to industrial projects; however, we invite researchers to replicate
our study on closed-source projects to identify differences and common points.

Another generalizability threat is related to the programming language
used to write the systems under analysis i.e., Python. We are aware that due to
the specific characteristics of this programming language, the generalizability
of our results needs to be confirmed by future studies using other programming

https://orcid.org/0000-0001-8088-1001

When Code Smells Meet ML 51

languages. We intend to conduct similar investigations for other programming
languages as part of our future agenda to confirm the findings.

Threats to Conclusion Validity The main threat to conclusion validity is re-
lated to the statistical tests applied to address RQy, specifically the Friedman,
the Wilcoxon test, and Cliff’s Delta, as violations of the assumptions underly-
ing these tests could affect the validity of the results. To mitigate this threat,
we assessed the distribution of the data to verify normality before selecting the
most appropriate test for each analysis. Nevertheless, there remains a possibil-
ity that subtle deviations in data characteristics could influence the outcomes
of the tests. Another threat involves the computation of lifespan in RQy4, where
we used the number of commits and days as time indicators. While these mea-
sures provide a practical way to estimate lifespan, they may not be entirely
precise. Variations in project practices, such as irregular commit activity due
to internal policies or external factors (e.g., holidays or sprints), could skew
the analysis and introduce inconsistencies. For instance, some projects may
commit less frequently over extended periods, leading to an underestimation
of lifespan, while others may commit in bursts, potentially inflating the indica-
tor. The large-scale nature of the study helped mitigate this potential threat;
however, future replications in different contexts would further enhance confi-
dence in our conclusions.

7 Conclusion

This study explores ML-specific code smells (ML-CSs), detailing their lifecy-
cle, prevalence, and impact in ML-enabled systems. By analyzing over 400,000
commits across 337 projects, we provide insights into how ML-CSs are in-
troduced, evolve, and are resolved, ultimately improving software quality. We
developed CODESMILE, a static analysis tool with 87% precision and 78%
recall, specifically for detecting ML-CSs. Our findings reveal that ML-CSs
often arise during maintenance and new feature development, sometimes in-
advertently during refactoring. Most are resolved during stable maintenance
periods, highlighting the need for proactive quality assurance throughout the
software development lifecycle. Future research will expand the capabilities of
CODESMILE to detect more ML-CSs and understand developers’ perceptions
of their severity and impact on maintainability, performance, and reliability.
Moreover, another promising direction for future research is understand-
ing developer intent and awareness when addressing ML-CSs. We found a
few instances where developers referred to removing ML-CSs. For example,
in the project geyang/ml_logger El, one commit message mentions correcting
the misuse of the sort_values API, corresponding to the ‘In-Place APIs Mis-
used’ smell. This suggests that developers are, in some cases, aware of and
intentionally address such issues. Moreover, while simple semantic inspection

7 Example of a smell-removing commit aware of the ML-CSs: https://github.com/gey
ang/ml-logger/commit/25aff14cf101ac4db06be02e65d845c54fc38c84

https://github.com/geyang/ml-logger/commit/25aff14cf101ac4db06be02e65d845c54fc38c84
https://github.com/geyang/ml-logger/commit/25aff14cf101ac4db06be02e65d845c54fc38c84

52 Gilberto Recupito® et al.

helped link certain commit messages to specific smells, many other cases would
require deeper analysis. Future work will explore the use of semantic analy-
sis and Large Language Models (LLMs) to infer developer intent and provide
richer insights into how and why ML-CSs are addressed during development.

We also aim to utilize advanced technologies, including LLMs, to create
automated strategies for refactoring ML-CS-affected code, enhancing the ro-
bustness of ML-enabled systems.

Acknowledgements

This work has been partially supported by the European Union - NextGen-
erationEU through the Italian Ministry of University and Research, Projects
PRIN 2022 ”QualAl: Continuous Quality Improvement of Al-based Systems”
(grant n. 2022B3BP5S , CUP: H53D23003510006) and by the EMELIOT na-
tional project funded by the MUR under the PRIN 2020 program (Contract
2020W3A5FY).

Declaration of Interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Data Availability Statement

The manuscript includes data as electronic supplementary material. In par-
ticular, datasets generated and analyzed during the current study, detailed
results, scripts, and additional resources useful for reproducing the study are
available as part of our online appendix on Figshare [25]. In addition, we in-
cluded the GITHUB repository link for CODESMILE: https://github.com/g
iammariagiordano/smell_ai/tree/main.

Credits

Gilberto Recupito: Formal analysis, Investigation, Data Curation, Valida-
tion, Writing - Original Draft, Visualization. Giammaria Giordano: Formal
analysis, Investigation, Data Curation, Validation, Writing - Original Draft,
Visualization. Filomena Ferrucci: Writing - Review & Editing. Dario Di
Nucci: Supervision, Writing - Review & Editing. Fabio Palomba: Supervi-
sion, Resources, Writing - Review & Editing.

https://orcid.org/0000-0001-8088-1001
https://github.com/giammariagiordano/smell_ai/tree/main
https://github.com/giammariagiordano/smell_ai/tree/main

When Code Smells Meet ML 53

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code smell

detection: A systematic literature review and meta-analysis. Information and Software
Technology 108, 115-138 (2019)

Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. Ency-
clopedia of software engineering pp. 528-532 (1994)

Bessghaier, N., Ouni, A., Mkaouer, M.W.: On the diffusion and impact of code smells
in web applications. In: Q. Wang, Y. Xia, S. Seshadri, L.J. Zhang (eds.) Services
Computing — SCC 2020, pp. 67-84. Springer International Publishing, Cham (2020)

. Cardozo, N., Dusparic, I., Cabrera, C.: Prevalence of code smells in reinforcement learn-

ing projects (2023)

Cliff, N.: Dominance statistics: Ordinal analyses to answer ordinal questions. Psycholog-
ical Bulletin 114, 494-509 (1993). URL https://api.semanticscholar.org/CorpusID:
120113824

Conover, W.J.: Practical nonparametric statistics, vol. 350. john wiley & sons (1999)
Costal, D., Gémez, C., Martinez-Fernandez, S.: Metrics for code smells of ml pipelines.
In: R. Kadgien, A. Jedlitschka, A. Janes, V. Lenarduzzi, X. Li (eds.) Product-Focused
Software Process Improvement, pp. 3—-9. Springer Nature Switzerland, Cham (2024)

. Cunningham, W.: The wycash portfolio management system. ACM Sigplan Oops Mes-

senger 4(2), 29-30 (1992)
Fowler, M.: Refactoring. Addison-Wesley Professional (2018)

. Fowler, M., Beck, K.: Refactoring: Improving the design of existing code. In: 11th

European Conference. Jyvéskyla, Finland (1997)

Giordano, G., Annunziata, G., De Lucia, A., Palomba, F., et al.: Understanding devel-
oper practices and code smells diffusion in ai-enabled software: A preliminary study. In:
IWSM-Mensura (2023)

Giordano, G., Fasulo, A., Catolino, G., Palomba, F., Ferrucci, F., Gravino, C.: On the
evolution of inheritance and delegation mechanisms and their impact on code quality. In:
2022 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 947-958. IEEE (2022)

Giordano, G., Fasulo, A., Catolino, G., Palomba, F., Ferrucci, F., Gravino, C.: On the
evolution of inheritance and delegation mechanisms and their impact on code quality. In:
2022 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 947-958 (2022)

Giordano, G., Sellitto, G., Sepe, A., Palomba, F., Ferrucci, F.: The yin and yang of
software quality: On the relationship between design patterns and code smells. In:
2023 49th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 227-234. IEEE (2023)

Khomh, F., Penta, M.D., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of the
impact of antipatterns on class change-and fault-proneness. Empirical Software Engi-
neering 17, 243-275 (2012)

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and laws
of software evolution-the nineties view. In: Proceedings Fourth International Software
Metrics Symposium, pp. 20-32. IEEE (1997)

Lenarduzzi, V., Lomio, F., Moreschini, S., Taibi, D., Tamburri, D.A.: Software quality
for ai: Where we are now? In: Software Quality: Future Perspectives on Software Engi-
neering Quality: 13th International Conference, SWQD 2021, Vienna, Austria, January
19-21, 2021, Proceedings 13, pp. 43-53. Springer (2021)

Martinez-Fernandez, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A.,
Vollmer, A.M., Wagner, S.: Software engineering for ai-based systems: a survey. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31(2), 1-59 (2022)
Murphy-Hill, E., Black, A.P.: Why don’t people use refactoring tools? In: Proceedings
of the 1st Workshop on Refactoring Tools, pp. 61-62 (2007)

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.: On the
diffuseness and the impact on maintainability of code smells: a large scale empirical
investigation. In: Proceedings of the 40th International Conference on Software Engi-
neering, pp. 482-482 (2018)

https://api.semanticscholar.org/CorpusID:120113824
https://api.semanticscholar.org/CorpusID:120113824

54

Gilberto Recupito® et al.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A.: Do they really smell
bad? a study on developers’ perception of bad code smells. In: 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 101-110. IEEE (2014)
Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A.: The scent of a smell:
An extensive comparison between textual and structural smells. IEEE Transactions on
Software Engineering 44(10), 977-1000 (2018). DOI 10.1109/TSE.2017.2752171

de Paulo Sobrinho, E.V., De Lucia, A., de Almeida Maia, M.: A systematic literature
review on bad smells—5 w’s: which, when, what, who, where. IEEE Transactions on
Software Engineering 47(1), 17-66 (2018)

Ratzinger, J., Sigmund, T., Gall, H.C.: On the relation of refactorings and software
defect prediction. In: Proceedings of the 2008 international working conference on
Mining software repositories, pp. 35-38 (2008)

Recupito, G., Giordano, G., Ferrucci, F., Di Nucci, D., Palomba, F.: When code smells
meet ml: On the lifecycle of ml-specific code smells in ml-enabled systems - appendix
(2024). DOI 10.6084/m9.figshare.28167065. URL https://doi.org/10.6084/m9.figsh
are.28167065

Recupito, G., Pecorelli, F., Catolino, G., Lenarduzzi, V., Taibi, D., Di Nucci, D.,
Palomba, F.: Technical debt in ai-enabled systems: On the prevalence, severity, im-
pact, and management strategies for code and architecture. Journal of Systems and
Software 216, 112151 (2024)

Rhmann, W.: Quantitative software change prediction in open source web projects using
time series forecasting. International Journal of Open Source Software and Processes
(IJOSSP) 12(2), 36-51 (2021)

Riquet, N., Devroey, X., Vanderose, B.: Gitdelver enterprise dataset (gded) an industrial
closed-source dataset for socio-technical research. In: Proceedings of the 19th Interna-
tional Conference on Mining Software Repositories, pp. 403-407 (2022)

Rosner, B., Glynn, R.J.: Power and sample size estimation for the wilcoxon rank sum
test with application to comparisons of ¢ statistics from alternative prediction models.
Biometrics 65(1), 188-197 (2009). DOI 10.1111/j.1541-0420.2008.01062.x. URL
https://doi.org/10.1111/7.1541-0420.2008.01062.x

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary,
V., Young, M., Crespo, J.F., Dennison, D.: Hidden technical debt in machine learning
systems. Advances in neural information processing systems 28 (2015)

Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining software
repositories. In: Proceedings of the 2018 26th ACM Joint meeting on european software
engineering conference and symposium on the foundations of software engineering, pp.
908-911 (2018)

Taibi, D., Janes, A., Lenarduzzi, V.: How developers perceive smells in source code: A
replicated study. Information and Software Technology 92, 223-235 (2017)

Tang, Y., Khatchadourian, R., Bagherzadeh, M., Singh, R., Stewart, A., Raja, A.: An
empirical study of refactorings and technical debt in machine learning systems. In: 2021
IEEE/ACM 43rd international conference on software engineering (ICSE), pp. 238-250.
IEEE (2021)

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshy-
vanyk, D.: When and why your code starts to smell bad (and whether the smells go
away). IEEE Transactions on Software Engineering 43(11), 1063-1088 (2017)

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshy-
vanyk, D.: When and why your code starts to smell bad (and whether the smells go
away). IEEE Transactions on Software Engineering 43(11), 1063-1088 (2017)

Van Oort, B., Cruz, L., Aniche, M., Van Deursen, A.: The prevalence of code smells
in machine learning projects. In: 2021 IEEE/ACM 1st Workshop on AI Engineering-
Software Engineering for AT (WAIN), pp. 1-8. IEEE (2021)

Walter, B., Alkhaeir, T.: The relationship between design patterns and code smells: An
exploratory study. Information and Software Technology 74, 127-142 (2016)

Wang, G., Wang, Z., Chen, J., Chen, X., Yan, M.: An empirical study on numerical
bugs in deep learning programs. In: Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pp. 1-5 (2022)

https://orcid.org/0000-0001-8088-1001
https://doi.org/10.6084/m9.figshare.28167065
https://doi.org/10.6084/m9.figshare.28167065
https://doi.org/10.1111/j.1541-0420.2008.01062.x

When Code Smells Meet ML 55

39.

40.

41.

42.

Widyasari, R., Yang, Z., Thung, F., Qin Sim, S., Wee, F., Lok, C., Phan, J., Qi, H., Tan,
C., Tay, Q., Lo, D.: Niche: A curated dataset of engineered machine learning projects
in python. In: 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), pp. 62-66 (2023)

Wohlin, C., Runeson, P., Hést, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in software engineering. Springer Science & Business Media (2012)

Zhang, H., Cruz, L., Van Deursen, A.: Code smells for machine learning applications.
In: Proceedings of the 1st International Conference on AI Engineering: Software Engi-
neering for Al, pp. 217-228 (2022)

Zhou, Y., Leung, H., Xu, B.: Examining the potentially confounding effect of class
size on the associations between object-oriented metrics and change-proneness. IEEE
Transactions on Software Engineering 35(5), 607-623 (2009)

	Introduction
	Background and Related Work
	Research Method
	Analysis of the Results
	Discussion and Take-Away Messages
	Threats to Validity
	Conclusion

