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ABSTRACT

IoT devices generate and exchange large amounts of data daily,
creating significant security and privacy challenges. Security test-
ing, particularly using Machine Learning (ML), helps identify and
classify potential malicious network traffic. Previous research has
shown how ML can aid in designing security tests for IoT attacks.
This ongoing paper introduces a search-based approach using Ge-
netic Algorithms (GAs) to evolve detection rules and detect in-
trusion attacks. We build on existing GA methods for intrusion
detection and compare them with leading ML models. We propose
17 detection rules and demonstrate that while GAs do not fully
replace ML, they perform well with ample attack examples and en-
hance the usability and implementation of deterministic test cases
by security testers.

CCS CONCEPTS

- Software and its engineering — Search-based software en-
gineering; Software testing and debugging.
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1 INTRODUCTION

Data generated and exchanged by IoT devices presents significant
security challenges, especially in networks [3]. Secure protocols
are essential for protecting data integrity and user privacy, while
comprehensive testing helps identify and rectify vulnerabilities that
attackers could exploit. Due to the extensive adoption of IoT devices,
the Software Engineering (SE) community primarily focused on an-
alyzing how security testing can help to prevent potential attacks [6]
and support practitioners to improve the system’s robustness to
defend from malicious attacks. Recent research by Giordano et
al. [7] analyzed how Artificial Intelligence (Al) is being used to
enhance privacy and security in IoT systems. Their study identi-
fied a trend in utilizing Al to develop frameworks for security test
cases. Al algorithms help security testers create effective test cases,
especially through intrusion detection models. These models use
specific criteria to detect and classify security threats, discovering
vulnerabilities within IoT network security.

Al-fuhaidi et al. [1] employed Genetic Algorithms (GAs) to de-
fine detection rules for identifying potentially DoS attacks, focusing
on the KDDCUP99 dataset [19]. Their GA-based approach targeted
DoS attacks and was compared with three established ML methods,
yielding similar performance results. While Al-fuhaidi et al. [1] pio-
neered the application of search-based algorithms, particularly GAs,
to define detection rules for identifying potentially malicious traffic,
their focus was primarily on DoS attacks using the KDDCUP99
dataset [19] without considering other attacks. This ongoing paper
aims to fill the gap by extending Al-fuhaidi et al.[1] providing the
following main contributions:

e A set of 17 detection rules for DoS, Probe, U2R, and R2L
attacks based on the features of the KDDCUP99 dataset [19];

e A comparison between GA and ML models to detect mali-
cious traffic;

o A public replication package [10] with the data and scripts
used in the study available for the research community.

2 INTRUSION DETECTION

Intrusion detection involves identifying unauthorized actions against
information systems, known as intrusions [22]. These intrusions
can be perpetrated by internal users seeking to elevate their access
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privileges or external users attempting to breach the system from
outside the network [20]. These activities pose various threats to
network security such as:

Denial of Service Attack (DoS) that overwhelms computing or
memory resources, rendering them too occupied to handle gen-
uine requests, disrupting regular system functioning, and deny-
ing legitimate users access, often employing techniques like
Smurf and Ping of Death.

Probing Attack (Probe) aims at collecting data regarding a net-
work of computers, seemingly to bypass its security measures.
User to Root Attack (U2R) describes an exploit in which the at-
tacker begins with a standard user account and then exploits
system vulnerabilities to gain root access, escalating privileges

beyond their initial level.

Remote to Local Attack (R2L) arises when an attacker, capable
of sending packets to a machine over a network but lacking an
account on that machine, exploits a vulnerability to attain local
access as a user of that machine.

3 RELATED WORK

In the following, we review how Al algorithms can be used to detect
intrusion attacks in the KDDCUP99 dataset. Stein et al. [17] utilized
GAss for feature selection, significantly enhancing the performance
of Decision Tree classifiers by pinpointing the most relevant fea-
tures. Dong et al. [9] and Li and Wang [11] improved SVM-based
models using GAs for feature selection and pre-processing, signifi-
cantly boosting model performance. Paliwal and Gupta [18] used
GAs to create a comprehensive detection rule for all attacks in the
dataset, achieving a detection rate of 97%. The most similar research
to ours is by Al-fuhaidi et al. [1], who used GAs to develop detection
rules specifically for DoS attacks and compared them with three ML
techniques—Bayes Network, Decision Tree, and SVM—achieving a
high detection rate and low false positive rate.

Building on Al-fuhaidi et al’s method, we extend the application
of GAs to generate detection rules for all attack categories in the
KDDCUP99 dataset and broaden the scope by comparing our results
to an expanded set of ML algorithms, including Decision Table,
Naive Bayes, and Random Forest.

4 RESEARCH METHOD

The goal of this study is to analyze to what extent GAs can be
used to detect malicious network traffic provided by IoT devices. To
achieve this goal, we generated a set of detection rules. The purpose
is to provide a set of rules that security testers can use to build
security tests. The quality focus is on GAs and their applicability to
detect suspect network traffic in IoT environments and compare it
with the performances of existing ML techniques. The perspective
is for both researchers and practitioners. The former are interested
in increasing their knowledge and comprehending the benefits and
drawbacks of using GA to discover suspect network traffic. The
latter are interested in discovering automatic solutions to imple-
ment more deterministic tests. The context of our investigation is
the KDDCUP99 [19] dataset, featuring four categories of attacks:
DENIAL OF SERVICE ATTACK (D0S), PROBING ATTACK (PROBE), USER
TO RooT AtTAack (U2R), and REMOTE To LocAL ATTACK (R2L), and
where the NorMAL label indicates legitim network traffic.
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Based on our motivations and according to our goal, we formu-
late the following research questions (RQs):

Q RQj To what extent can genetic algorithms generate detection
rules to identify DoS attacks?

With our RQ1, we are interested in re-assessing the state-of-the-
art by comparing our implementation with the results achieved by
Al-fuhaidi et al. [1]. This step is necessary due to the unavailability
of a replication package in the original study.

Q RQ; What are the performance of GAs in detecting intrusion
attacks?

After assessing the ability of GAs of generating detection rules,
we aim to assess the performances of detecting intrusion attacks
available in the KDDCUP99 dataset. To address RQ2, we compared
the performance of GAs with respect to ML algorithms.

We design the study following the guidelines by Wohlin et al. [21]
and the ACM/SIGSOFT Empirical Standards.! Figure 1 illustrates the
research process we applied to perform our investigation.

Dataset Description. To achieve our objective, we select the
KDDCUP99 dataset. The motivations to select this dataset are four-
fold: (i) the dataset is one of the largest publicly available, with
over five million connection records obtained by a TCP DUMP data
of seven weeks, with over two million of connection records for
the test set, (ii) the dataset was analyzed mainly in previous work,
resulting in the top-3 of the most used datasets in IoT environ-
ments according to the SLR conducted by Giordano et al. [7], (iii)
Al-fuhaidi et al. [1] leverages this dataset to perform its analysis,
and (iv) KDDCUPY9 features five categories of network traffic [19].
Due to the large number of connection records in the dataset, the
authors also released a representative sampling composed of 10%
of data instances. This sampling dataset is typically used in previ-
ous work that investigates similar tasks [1, 15, 16]. We analyzed
the dataset characteristics by observing the distribution for each
network traffic label (i.e., DoS, Normal, Probe, R2L, and U2R).

An overview of the dataset reveals that out of over 494k connec-
tion instances, representing 79% of the instances, are classified as
DoS attacks, followed by 20% as Normal traffic. The remaining 1%
is distributed among the other three categories (Probe, R2L, and
UZ2R), highlighting the unbalanced nature of the dataset.

Encoding of the Individuals. The individuals in the popula-
tion are sets of if (condition) then {action} rules designed to detect
harmful connections, which are formed using the logical AND oper-
ator, with numerical features encoded with inequalities, except for
categorical ones (e.g., protocolType). Numerical genes are integers
bounded by specific minimum and maximum values derived from
dataset analysis. Each attack category is encoded separately based
on relevant features identified using the Information Gain algorithm
provided by Kayacik et al. [8]. For instance, for DoS attacks, the
chromosome includes 11 parts; some containing single genes corre-
sponding to unique feature ranges and others encoding inequality
verses. Feature ranges represent the value bounded by a maximum
and a minimum for each feature. The features with equal values are

“WrongFragment”, “Urgent”, “Count” and “SrvCount”, and those

! Available at: https:/github.com/acmsigsoft/EmpiricalStandards
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Figure 1: Overview of the research method applied in our study.

expressing percentage values. The last part of the chromosome con-
tains genes related to the inequality verses to be tested. Specifically,
“1” represents “<” while “2” represents “>”.

Fitness Function. To compare our results, we adopt the same
fitness function provided by Al-fuhaidi et al. [1].

_ detected_attacks
" total_attacks

false_attacks
total_connections

fitness (1)

The variable detected_attacks indicates the attacks correctly de-
tected, whereas false_attacks indicates the connections misclassi-
fied as malicious. total attacks is the number of attacks, and to-
tal_connections is the total number of network connections, includ-
ing those malicious. Notably, larger fitness function values indicate
rules with a better ability to detect threats in the dataset, so the
fitness measure is to be maximized.

Parameters. We used the Java library JENETICS for evolutionary
computation. We attempt several parameter configurations, and the
final consists of 10% and 90% mutation and crossover probability.
The selection operator is the EliteSelector [4] to ensure a form
of elitism [14] in the population, allowing the best solutions to
survive to the next generation without change. The default mutation
operator alters individual genes within prefixed ranges to enhance
solution exploration and diversity in the population. The population
size is set at 1, 000, with a stopping criterion set at 1, 000 generations.
The initial population is generated randomly, defining individuals
within a specified range for each gene to ensure diversity.

Validation. We compare the performance of our method with a
set of ML algorithms to contextualize and evaluate its performance
while replicating Al-fuhaidi et al. [1]. To reinforce the validation
step, we decide to include in our experiment the set of ML tech-
niques used by Al-fuhaidi et al. BAYEs NETWORK, DECISION TREE,
and SUPPORT VECTOR MACHINE and to extend it by including DE-
c1sioN TABLE, NAIVE BAvEs and RaANDoM FOREsT. We select these
techniques due to their popularity, as they have been used in lit-
erature for similar tasks on the same dataset [2, 5, 12, 13]. We de-
cided to apply no data balancing technique to maintain the original
prevalence ratios of intrusion attacks in the datasets. We ensured
consistent observation of all attack types by employing 10-fold
cross-validation. This approach allowed the model to robustly eval-
uate performance across diverse attack scenarios without altering
the inherent attack distributions.

5 ANALYSIS OF THE RESULTS

This section describes the results of our work. For the sake of
comprehensibility, we split the discussion by research question,

Table 1: Performance of the GA as # rules increases.

Performance Metrics

Rule Type #Rules Precision Recall F-Measure Accuracy Specificity MCC FA Rate

DoS 1 1.000 0.207 0.342 0.363 1.000 0.221 0.000
2 1.000 0.915 0.956 0.932 1.000 0.824 0.000
3 1.000 0.965 0.982 0.972 1.000 0.918 0.000
4 1.000 0.965 0.982 0.972 1.000 0.919 0.000
5 1.000 0.968 0.984 0.974 1.000 0.925 0.000
6 1.000 0.971 0.985 0.976 1.000 0.931 0.000
7 1.000 0.972 0.986 0.977 1.000 0.933 0.000
8 1.000 0.972 0.986 0.978 1.000 0.934 0.000
9 1.000 0.973 0.986 0.978 1.000 0.935 0.000
10 1.000 0.978 0.989 0.982 1.000 0.947 0.000
11 1.000 0.981 0.990 0.985 1.000 0.954 0.000
Probe 12 1.000 0.992 0.996 0.994 1.000 0.981 0.000
13 1.000 0.994 0.997 0.995 0.999 0.985 0.001
14 0.999 0.996 0.998 0.996 0.996 0.988 0.004
15 0.999 0.997 0.998 0.997 0.996 0.990 0.004
UzL 16 0.998 0.998 0.998 0.997 0.992 0.990  0.008
17 0.994 0.999 0.997 0.994 0.974 0.982 0.026

including the detection rules and the performance achieved by the
experimented approaches.

5.1 Detection Rules

We developed 17 detection rules for various network attacks: 11
for DoS attacks, four for Probe attacks, and two for U2R attacks.
Additionally, we discovered that combining DoS and Probe attack
rules effectively detects R2L attacks.

For certain features such as ProtocolType, Service, Flag, and Land,
we only used the equality operator. This choice was made because
the specific nature of these features and their possible values better
suit the use of equality (i.e., Enum or String values), which simplifies
the rule’s logic and execution time of the algorithm.

In our detection rules, only the values associated with a category
in the genetic representation are subject to mutation. This approach
helps maintain the rules’ clarity and effectiveness.

if (duration <= 5855 AND protocolType == icmp AND
service == ecr_i AND flag == SF AND srcBytes >= 462 AND
dstBytes <= 8249 AND land == @ AND wrongFragment <= 2 AND

urgent <= @ AND count >= 1 AND srvCount >= 1 AND
serrorRate <= 0.81 AND srvSerrorRate <= 0.27 AND
rerrorRate <= 0.88 AND srvRerrorRate <= 0.31 AND
sameSrvRate <= 1.00 AND diffSrvRate <= 0.90 AND
srvDiffHostRate <= 1.00) {attack found}

Listing 1: DoS Detection Rule

Listing 1 shows an example of a DoS detection rule. A DoS attack
is identified when all the criteria in the if condition are satisfied
(e.g., “duration” < 5855 suggests that one symptom of a potential
DosS attack is characterized by a relatively short connection time
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Table 2: Comparison with Al-fuhaidi et al. [1] for DoS attacks

Metrics Presented GA  Al-fuhaidi et al. GA
Precision 0.993 0.999
Recall 0.999 0.998
F-Measure 0.996 0.999
Accuracy 0.994 0.999
Specificity 0.974 0.999
MCC 0.982 0.999
False Alarms 0.025 3e-5

between the host and server nodes). Similar considerations can be
made for the other detection rules identified.

Table 1 shows the performance of the GA as the number of
considered detection rules increases. The “4Rules” column indicates
the number of rules considered. Out of the 17 computed rules, the
first 11 are related to DoS attacks, the 12th to 15th are related to
Probe attacks, and the last two are related to U2R attacks.

Recall, F-Measure, Accuracy, and Matthews Correlation Coeffi-
cient (MCC) performance improves as the number of rules consid-
ered increases. Similarly, the False Alarm Rate (FA) worsens. Finally,
we added new detection rules related to Probe and U2R attacks
compared to Al-fuhaidi et al. [1]. These rules increase the diversity
of detectable attacks from one to four while increasing the per-
formance of GA. While evaluating the GA’s performance, as the
number of detection rules considered increased, we realized that
the first 15 rules were sufficient to detect the attacks for which they
were developed and the R2L attack. This suggests a correlation
between DoS and Probe attacks and R2L attacks that should be
investigated in future work.

5.2 RQ;.Using GAs to Detect DoS Attacks

To answer RQ1, we compared our results with those obtained by Al-
fuhaidi et al.[1], as shown in Table 2. Both models have a high level
of performance for all considered metrics. Our solution exhibits
an increased recall compared to the original work, which allows
it to detect a greater variety of attacks. However, other evaluation
metrics show slight degradation. Observing the Specificity and
False Alarm rate shows a clear difference between the performance
of the detection rules generated in this study and the preliminary
study. A lower score in these metrics indicates that the detection
rules have a higher false positive rate.

Key findings for DoS attack detection. The detection rules
for DoS attacks produced by GAs demonstrate performance similar
to those derived by Al-Fuhaidi et al. [1]. Specifically, they exhibit
higher recall rates despite being generated from a model that ac-
counts for various attack types.

Table 3: Comparison with classifiers for DoS attacks

Metrics GA J48  BayesNet SMO NB RF DT
Precision 0.994 0999 0.999 0.999 0991 0.999 0.999
Recall 0.999  0.999 0.994 0.999 0991 0.999 0.999
F-Measure 0.997  0.999 0.997 0.999 0991 0.999 0.999
Accuracy 0.995 0.999 0.995 0.999 0991 0.999 0.999
Specificity 0.974  0.999 0.999 0.999 0.999 0.999 0.998
MCC 0.984 0.999 0.985 0.998 0972 0.999 0.999

False Alarms  0.026 le—5 le=5 le=5 0.015 1le-5 0.001

La Gamba et al.

Table 4: Comparison with classifiers for Probe attacks

Metrics GA J48  BayesNet SMO NB RF DT
Precision 0.620 0.997 0.814 0.993 0.318 0.999 0.979
Recall 0.987 0.995 0.987 0.980 0.936 0.996 0.986

F-Measure 0.761  0.996 0.892 0.986 0.475 0.997 0.983
Accuracy 0.975 0.999 0.990 0.998 0.916 1.000 0.999
Specificity 0.974 0.999 0.990 0.999 0.915 1.000 0.999
MCC 0.772  0.996 0.892 0.986 0.518 0.997 0.982
False Alarms  0.026 le—5 le-5 le-5 1le-5 1le—5 le-5

Table 5: Comparison with classifiers for U2R attacks

Metrics GA J48  BayesNet SMO NB RF DT
Precision 0.004 0.794 0.218 0.896 0.007 0.952 0.475
Recall 0.222  0.596 0.826 0.500 0.942 0.769 0.538
F-Measure 0.008 0.681 0.345 0.642 0.014 0.851 0.505
Accuracy 0.974  0.999 0.998 0.999 0.928 1.000 0.999
Specificity 0.974  0.999 0.998 1.000 0.928 1.000 1.000
MCC 0.028 0.688 0.424 0.669 0.077 0.856 0.505

False Alarms 0.026 1le—5 le-5 le-5 1le-5 1le-5 1le-5

5.3 RQ,.GAs Performance

Table 3 compares the performance of the GA and the classifiers for
detecting DoS attacks. The performance of the GA can almost reach
those of the ML models, particularly in terms of recall. Conversely,
the specificity is lower, and the false alarm rate is slightly higher,
denoting a higher tendency to generate false positives.

Table 4 shows the results obtained detecting Probe attacks. The
GA method shows good potential despite a moderate precision of
0.620. The outcome is confirmed by observing the false alarm rate,
which is equal to 0.026, higher than ML models. However, the GA
showcases a recall value of 0.987, signifying a meager false-negative
rate. Nevertheless, capturing the majority of positive instances re-
mains a priority in security, even if it results in some false positives.

Table 5 shows the performance obtained in detecting UZR at-
tacks. The results are strongly influenced by the unbalanced dataset,
where high accuracy and specificity are obtained at the expense of
the other metrics. As the specificity is higher than precision and
recall, the set of detection rules generated can detect true negative
instances. Furthermore, given the low number of positive class in-
stances, the model cannot detect this type of instance, reporting a
very low precision.

Table 6: Comparison with classifiers for R2L attacks

Metrics GA  J48 BayesNet SMO NB RF DT
Precision 0.286  0.990 0.623 0916 0.433 0.992 0.957
Recall 0.887  0.965 0.981 0.907 0.691 0.984 0.960
F-Measure 0.433  0.977 0.762 0912 0.532 0.988 0.959
Accuracy 0.973  0.999 0.993 0.998 0.986 1.000 0.999
Specificity 0.974  0.999 0.993 0.999 0.990 1.000 1.000
McCC 0.495 0.977 0.779 0911 0.540 0.988 0.958

False Alarms 0.026 1le-5 le-5 le-5 1le-5 1le-5 1le-5

Table 6 illustrates the results of detecting R2L attacks. Despite
the dataset’s imbalance due to the low occurrence of U2R attacks,
the combination of detection rules targeting DoS and Probe attacks
enhances the detection of R2L attacks, resulting in better perfor-
mance in detecting R2L attacks. Specifically, the precision remains
lower than ML models, with a value of 0.286. The Random Forest
model exhibits the highest precision, scoring 0.992. However, while
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we also discovered a low recall value for U2R attacks, the situation
is different for detecting R2L attacks. The set of detection rules
used and combined to detect R2L attacks presents a recall of 0.887,
comparable to the one achieved by the ML model, with a maximum
recall achieved by Random Forest with a score of 0.984. Therefore,
detecting R2L attacks through the detection rules states a high false
positive rate but with a high recall covering many attacks.

To conclude, while GAs obtain high performance to detect intru-
sion attacks, ML models outperform in this task for all of the four
attacks analyzed. Unlike some ML models, which can obscure the
rationale behind their detections, the clear conditions and thresh-
olds set by GAs provide insights into how detections are made. This
aids in investigating critical attack features and behaviours using
conditions and thresholds defined in the detection rules. They serve
as key elements for security testing, where these rules help develop
test cases. These tests assess the robustness by emulating attack
scenarios, confirming their efficacy in different contexts. While ML
models perform better in detecting intrusion attacks, the detection
rules provide a transparency and interpretability level that a tester
can use to understand the conditions in which an attack occurs.

Key findings for GAs Performance. ML algorithms outper-
form GAs for detecting intrusion attacks, but detection rules allow
the security tester to understand the conditions and thresholds in
which the attack occurs.

6 THREATS TO VALIDITY

This section presents the main limitations of our studies.

Construct Validity. We are conscious that the dataset selection
may influence the results. However, this decision enabled us to com-
pare our results with the state-of-the-art and to contextualize them
better. After several attempts, the best combination of encodings to
use in cascade was 11 DoS, four Probe, and two U2R encoded rules.

External Validity. Given the imbalanced dataset, our results’
generalizability may be reduced, affecting detection rules for U2R
and R2L attacks. Therefore, we combined detection rules for Probe
and DoS attacks to detect R2L attacks, enhancing detection capa-
bilities. Future efforts will focus on collecting more data on Probe,
U2R, and R2L attacks and expanding KDDCUP99 by integrating
multiple datasets from the same domain. Another critical concern
is the risk of overfitting GAs, leading to detection rules that may
only fit part of the dataset. To mitigate this, we introduced multi-
ple detection rules for each attack and diversified conditions for
intrusion detection, enhancing robustness.

Conclusion Validity. To evaluate the performance of our de-
tection rules and compare them to the work of Al-Fuhaidi et al.[1],
we adopted the performance metrics they used. However, relying
solely on these metrics can provide a limited understanding of the
detection rules’ capabilities. To address this, we expanded the set of
metrics including F-measure, Recall, Specificity, and MCC, enabling
us to assess the performance of detection rules better.

7 CONCLUSIONS AND FUTURE WORK

This study evaluated the adoption of GAs to create 17 detection rules
to identify four attack types. The results denote good performance
in detecting intrusion attacks when the adopted dataset features
an adequate number of malicious instances. Findings of the study
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open the possibility of having explainable solutions to generate test
cases based on the features adopted to create the detection rules.
Future work entails applying and validating these features for
test case generation in industrial contexts. Furthermore, we will
investigate the characteristics of R2L attacks, finding correlations
with other types of attacks based on the features that we selected.
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