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Abstract—The rapid growth of generative artificial intelligence,
especially Large Language Models (LLMs), has greatly influenced
software engineering by automating code generation tasks. De-
spite the potential, challenges in code maintainability and quality
persist, mainly due to prompt design. This study examines how
various prompt patterns influence the complexity of Python code
generated by LLMs, using the Dev-GPT dataset. Four prompt
patterns were analyzed: Zero-shot, Few-shot, Chain-of-Thought,
and Personas. Complexity metrics assessed include Lines of
Code (LOC), Cyclomatic Complexity, and Halstead metrics,
with statistical analyses conducted using the Kruskal-Wallis test
and post-hoc pairwise comparisons. Results showed significant
differences in LOC and related sub-metrics among these prompt
patterns. Notably, the Chain-of-Thought pattern consistently
generated more concise and efficient code, offering strategies to
enhance LLM-generated code quality and maintainability.

Index Terms—Prompt Engineering; Prompt Patterns; Code
Complexity; Empirical Software Engineering.

I. INTRODUCTION

The rapid advancement of generative artificial intelligence
(AI) and, in particular, Large Language Models (LLMs) has
initiated a transformative shift in various domains, including
software engineering [1], [2]. Within this field, LLMs demon-
strate significant potential by automating code generation,
assisting in component development, and supporting decision-
making processes [2]. Despite these advancements, the adop-
tion of LLMs in software development workflows remains
fraught with challenges, particularly regarding the quality and
consistency of generated code [3], [4].Furthermore, the com-
plexity of AI-generated source code, an important determinant
of its maintainability, remains underexplored, particularly in
the context of systematic prompt engineering strategies.

While existing research highlights the utility of prompt
patterns in improving LLM performance [5], [6], current
studies often fail to comprehensively address their influence
on critical software quality attributes, such as code complexity.

This study investigates how different prompt patterns affect
the complexity of Python code generated by large language
models (LLMs). Python was chosen for its prominence in
AI and ML development, where maintaining reliable and
efficient code is critical. The research focuses on complexity
metrics—such as Lines of Code, Cyclomatic Complexity, and
Halstead measures—across four prompt categories: Zero-shot,
Few-shot, Chain-of-Thought, and Personas. Using an empir-
ical approach, the study analyzed whether prompt patterns
significantly influence code complexity, aiming to improve the
maintainability of ML-enabled systems.

The findings revealed that the use of different prompt
patterns significantly influences size-related metrics, such as
SLOC, Multi, and Blank lines, while no significant impact was
observed on the number of comments. Specifically, the Chain-
of-Thought pattern demonstrated its effectiveness in generating
concise and efficient code through step-by-step reasoning,
making it a suitable approach for improving code readability
and maintainability. In contrast, the exclusive use of Few-Shot
tended to produce verbose or unnecessarily complex code,
potentially introducing quality issues.

II. BACKGROUND AND RELATED WORK

Research on source code complexity often revolves around
both traditional and advanced metrics. Object-oriented metrics,
such as Chidamber and Kemerer (CK) metrics, lines of code
(LOC), McCabe’s cyclomatic complexity (CC), and counts of
methods and attributes, are commonly employed in the context
of object-oriented programming [7]. Entropy-based measures
are also used to quantify code change complexity and predict
future challenges [8]. While CC and LOC remain widely
used for internal quality assessment, debates persist over their
redundancy due to strong linear correlations [9].

Metrics play a pivotal role during the design stage, offering
early predictions of code quality by evaluating specifications
prior to development. This approach can reduce development
time by highlighting potential issues early [10]. Studies on
open-source projects reveal that complexity evolves over time,
aligning with Lehman’s laws of software evolution, and often
shifts between design hierarchy levels [11].

LLMs have demonstrated significant potential in automating
code generation, though their effectiveness varies depending
on the complexity of tasks. Models such as GPT-4 and GPT-
3.5 have shown improved performance in code generation
when holistic strategies are employed, whereas incremental
approaches yield better results for other models. Incorporating
programming practices, such as creating high-level sketches
before implementation, has further enhanced the performance
of LLMs [12]. Sasaki et al. [13] introduced the concept of
prompt engineering patterns, describing them as a “systematic
approach to structuring interactions, providing a versatile
framework applicable across various domains”. White et
al. [14] highlighted the importance of prompt engineering
in software engineering and reported that effective, prompt
usage improves the early stages of the software development
lifecycle. A significant contribution to the field was made by



Xiao et al. [4], who developed DEV-GPT, a dataset aimed at
studying how developers interact with CHATGPT in software
development contexts. In light of these prior studies, we
complement existing research by focusing on the influence
of prompt patterns on quality-related metrics describing the
complexity of generated source code.

III. OBJECTIVE AND RESEARCH QUESTION

The goal of this work is to determine the extent to which
specific prompt patterns influence the complexity of source
code generated by LLMs, with the purpose of expanding
current knowledge in prompt engineering and potentially un-
covering the side effects of code generation.

To reach the defined goal and test the working hypothesis,
we formulated a research question (RQ) whose main aim is
to shape and guide the research process.

? RQ — Are there significant differences in the com-
plexity of Python source code generated by LLMs when
using varying prompt patterns?

In order to represent complexity, we operationalized five
well-known metrics, i.e., Lines of Code (LOC), Cyclomatic
Complexity, Volume, Difficulty, and Effort (deepened in Sec-
tion IV-A). Thus, we formulated the following hypotheses:

• Null Hypotheses: There are no significant differences
in (H10) LOC, (H20) Cyclomatic Complexity, (H30)
Volume, (H40) Difficulty, and (H50) Effort complexity
metrics of the Python source code generated by LLMs
based on the prompt pattern used.

• Alternative Hypotheses: There are significant differ-
ences in (H1A) LOC, (H2A) Cyclomatic Complexity,
(H3A) Volume, (H4A) Difficulty, and (H5A) Effort com-
plexity metrics of the Python source code generated by
LLMs based on the prompt pattern used.

The research question defined serves to guide the statistical
analysis of the potential relationship between different prompt
patterns and the complexity of generated Python source code.
Addressing this question is essential for achieving the study’s
overall objective, as it provides insights into how specific
prompt patterns may affect the overall complexity of code
generated by LLMs.

IV. RESEARCH DESIGN

The study analyzed developer-LLM conversations by clean-
ing the dataset, examining prompt patterns, formatting code
snippets for analysis, and using static analysis and statistical
methods to calculate code complexity metrics and answer the
research question.

A. Variables of the Study

The independent variable was operationalized using a cate-
gorical scale consisting of four prompt pattern categories and
their combination, frequently discussed in the literature:

• Zero-shot (ZS) [15]: It involves the use of a specific
prompt with no examples but relies on the knowledge
of the model based on training data to perform the task.

• Few-shot (FS) [16]: It describes the addition of task
execution examples within the prompt to increase the
level of detail that the model can use, providing solutions
to perform the target task.

• Chain-of-Thought (CoT) [17]: it includes a step-by-step
reasoning description of the logical flow to execute the
task. It enhances the model’s logical consistency and
detail.

• Personas (Per) [3]: It requests to “interpret” a specific
character within the prompt, helping the model to com-
prehend the referring context and perspective of the role.

Regarding the dependent variable, we used all the complex-
ity metrics made available by the RADON1 library, well-known
for analyzing Python code. Specifically, we used:

• Cyclomatic Complexity (CC): The number of decisions a
block of code contains plus 1.

• Halstead Volume (V): It is the actual size of a program
if a uniform binary encoding for the vocabulary is used.

• Difficulty (D): The difficulty level or error-proneness of
the program is proportional to the number of unique
operators in the program.

• Effort (E): The effort to implement or understand a
program is proportional to the volume and to the difficulty
level of the program.

• Lines of Code (LOC): The total number of lines of code.
This metric is calculated as the sum of Source Lines of
Code (SLOC), Multi-lines strings (M), Comments (CO),
and Blank lines (B).

B. Dataset

The DEV-GPT dataset [4] comprises developer interac-
tions with CHATGPT across various software development
tasks, collected using OPENAI’s conversation-sharing feature.
It includes 6 json files representing data from sources
like GITHUB issues, pull requests, commits, code files, and
HACKER NEWS threads. The dataset, containing 5494 con-
versation rounds and 29 788 prompts, spans 13 988 code
snippets across 113 programming languages. For this study,
only Python-related interactions were analyzed. Conversations
with mixed-language code were filtered to include only Python
segments. This selection process yielded 329 conversations
and 2405 Python code files for analysis.

C. Data Processing and Analysis

To address our research question, the analysis began with
the cleaned dataset and proceeded through the steps necessary
to identify prompt patterns. Specifically, the identification of
prompt patterns in user conversations was conducted using
the capabilities of ChatGPT 4o-mini (snapshot 2024-07-18).
Following the automated classification by the LLM, the first
three authors manually reviewed a sample of the results to
ensure the accuracy of the classification process.

Then, all Python snippets were converted into code files,
and static analysis was performed to calculate code complexity

1https://pypi.org/project/radon/
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TABLE I: Kruskal Wallis for LOC metrics.

Factor Statistic df p Rank ε2

SLOC 19.476 5 0.002 0.009
Multi 13.527 5 0.019 0.006
Comments 9.390 5 0.095 0.004
Blank 16.270 5 0.006 0.007
Note. Factor: Variable tested, Statistic: Test statistic (H), df: Degrees of
freedom, p: Significance level, Rank ε2: Effect size.

metrics using the RADON library. The metrics described in
Section IV-A were extracted, and the dataset was augmented
with this additional information for further analysis.

Subsequently, statistical analyses were performed on the
dependent variables across various sets of conversations, cat-
egorized based on prompt patterns. Due to violations of
ANOVA assumptions, the non-parametric Kruskal-Wallis test
was utilized, followed by Dunn’s post hoc test for pairwise
comparisons. A significance threshold of α = 0.05 was
applied throughout the analysis. Since some of our metrics
(e.g., LOC) are themselves composed of finer-grained sub-
metrics, in cases where the primary metrics were found to
be significant, the same analysis was conducted for their sub-
metrics. The analysis was conducted using the JASP statistical
analysis software.2

V. ANALYSIS OF THE RESULTS AND DISCUSSION

In this section we present the results of our analysis.3

The first part of the analysis involved using kruskal wallis to
test significant differences between difference prompt patterns
for the following source code metrics: LOC, Cyclomatic
Complexity, Volume, Difficulty, and Effort. The instances for
ZS-CoT-Per (5 instances) and FS-CoT-Per (4 instances) were
excluded from consideration due to their insufficient sample
size, as both contained fewer than 10 instances.

The test revealed a statistically significant difference for
LOC (ρ = 0.003), with a small effect size (Rank ε2 = 0.008).
However, no statistically significant differences were observed
for Cyclomatic Complexity (ρ = 0.380), Volume (ρ = 0.354),
Difficulty (ρ = 0.374), or Effort (ρ = 0.369). The effect sizes
for these metrics were minimal (Rank ε2 = 0.002 for each).

These results suggest that while no significant differences
are found across prompt patterns for the other metrics, LOC
varies significantly across the use of different prompt patterns.
For the sake of readness and clarity, we reported only statisti-
cally significant differences among our variables. More details
on other relationships found in this study are available in our
online appendix [18].

Since LOC was found to be significant, a deeper analysis
was conducted on its sub-measures, as shown in Table I.
The sub-measures selected are SLOC, Multi, Comments, and
Blank, described in Section IV-A.

The results indicate that SLOC (ρ = 0.002, Rank ε2 =
0.009), Multi (ρ = 0.019, Rank ε2 = 0.006), and Blank

2JASP website: https://jasp-stats.org
3Detailed results are reported in our online appendix [18].

TABLE II: Descriptive Statistics.

Variable Prompt Pattern Median Mean Std. Deviation

SLOC
ZS-CoT 7.000 10.089 10.539

FS 11.000 15.954 16.168

FS-Per 5.500 8.800 8.788

Multi
ZS 0.000 0.180 1.675

ZS-CoT 0.000 0.400 1.517

Blank
ZS-CoT 1.000 2.578 3.329

FS 3.000 4.160 4.695

(ρ = 0.006, Rank ε2 = 0.007) were statistically signif-
icant, with small effect sizes. Conversely, Comments did
not show a statistically significant difference (ρ = 0.095,
Rank ε2 = 0.004). These findings suggest that differences in
LOC across prompt patterns are primarily driven by variations
in SLOC, Multi-line strings, and Blank lines, while comments
are relatively consistent across groups. For this reason, H1A
is considered supported.

To further investigate the significant results identified for
the SLOC, Multi, and Blank metrics, a post-hoc Dunn test
was conducted.

• The Dunn test results identified statistically significant
differences in the SLOC metric among specific group
comparisons. After applying the Holm correction to ac-
count for multiple comparisons, significant differences
were observed between ZS-CoT and FS (ρholm = 0.022)
and between FS and FS-Per (ρholm = 0.021). These
findings suggest meaningful distinctions in SLOC values
between these pairs of groups. Notably, the effect size for
FS vs. FS-Per was substantial (rrb = 0.603), indicating a
considerable difference, while the effect size for ZS-CoT
vs. FS (rrb = 0.233) was smaller but still noteworthy.

• Regarding the Multi metric, the results indicate one statis-
tically significant difference. Specifically, the comparison
between ZS and ZS-CoT (ρholm = 0.006) is significant,
with a small effect size (rrb = 0.051). This result
suggests a meaningful distinction between these groups
in the Multi metric, though the effect size indicates the
difference is relatively minor.

• The Dunn test results for the Blank metric indicate one
statistically significant difference after applying the Holm
correction. Specifically, the comparison between ZS-CoT
and FS (ρholm = 0.045) is significant, with a small effect
size (rrb = 0.206). This suggests a meaningful difference
between these groups in the Blank metric.

The Dunn test results revealed statistically significant differ-
ences across multiple metrics. For the SLOC metric, notable
distinctions were identified between ZS-CoT and FS, as well
as between FS and FS-Per, with varying effect sizes indicating
both moderate and substantial differences. In the Multi metric,
a significant but minor distinction was observed between
ZS and ZS-CoT. Similarly, the Blank metric highlighted a
meaningful, albeit small, difference between ZS-CoT and FS.
These findings suggest that differences across groups vary in
magnitude depending on the metric analyzed, with some com-

https://jasp-stats.org


parisons showing stronger effects than others. We analyzed
the effects of different prompt patterns on code generation
metrics, focusing on size-related aspects. The results show
that the ZS-CoT pattern produces significantly shorter code
compared to FS (median: 7 vs. 11 SLOC), indicating greater
efficiency. The FS-Per pattern further reduces code length
(median: 5.5 SLOC) compared to FS, though it is not signifi-
cantly different from ZS-CoT. Regarding blank lines, ZS-CoT
generates fewer than FS, with a median of one blank line.
Additionally, ZS-CoT includes fewer multi-line strings than
ZS, demonstrating differences in how patterns influence code
structure. The analysis demonstrates significant differences in
how various prompt patterns influence the complexity of the
generated code, particularly in terms of size-related metrics.
Furthermore, the choice of prompt pattern plays a crucial role,
depending on the specific goals of the user when generating
LLM responses.

One major finding of the study highlights the fact that
the application of the Zero-Shot combined with the CoT
prompt pattern consistently results in shorter code compared
to other prompt patterns, highlighting its effectiveness, so
practitioners should prefer those patterns to generate more
short and maintainable code.

VI. LIMITATIONS AND THREATS TO VALIDITY

This study acknowledges several threats to validity, identi-
fied based on its design.

Regarding Construct Validity, the classification of prompt
patterns into categories such as Zero-shot, Few-shot, Chain-of-
Thought, and Personas may oversimplify the nuanced ways in
which these patterns influence code generation. Although the
categorization was informed by established literature, it may
not fully account for variations in pattern design and imple-
mentation. Moreover, the complexity metrics of source code
were calculated using the RADON library and so the findings
are heavily dependent on the accuracy and implementation of
the metrics as computed by this tool.

With respect to External Validity, the reliance on a single
dataset of conversations (DEV-GPT) obtained by the use of
a single LLM (Chat-GPT) may limit the applicability of the
results to other datasets or language models. Future research
should extend the analysis to include additional datasets to
validate the findings in broader contexts.

Finally, for Conclusion Validity, the use of the Kruskal-
Wallis test, a non-parametric alternative to ANOVA, mitigated
issues related to normality and variance assumptions. However,
rank-based analysis can limit the detection of subtle effects. To
enhance robustness, significance thresholds were carefully set
to reduce the risk of Type I and II errors, thereby increasing
the reliability of the study’s conclusions.
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